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RESUMO

Este Trabalho de Formatura aborda o problema de calibração de parâmetros de controle de
estoque no contexto do Stochastic Economic Scheduling Problem (SELSP), considerando uma
linha de produção em lotes, com múltiplos produtos. Para abordar esse problema, desenvolveu-
se um modelo de simulação-otimização em Python, com o qual foram testados quatro métodos
de busca/otimização distintos (Busca aleatória, Nelder-Mead, Genetic Algorithm e Ant Colony
Optimization). Para calibrar esses algoritmos, desenvolveu-se um plano de experimentos de
calibração para cada método de busca. Em seguida, com os métodos calibrados, um experi-
mento fatorial foi realizado para avaliar e comparar o desempenho dos algoritmos. Por meio
de uma análise de variância dos resultados obtidos nos experimentos, notou-se que o algo-
ritmo Nelder-Mead se mostrou o mais eficiente em termos de resultados obtidos (ex: custos
e nı́vel de serviço), propondo soluções de custos até 24% inferiores às dos outros métodos,
além de apresentar maior facilidade de calibração dos seus hiperparâmetros. A abordagem
adotada neste Trabalho, que resultou na elaboração de um modelo de simulação-otimização
em Python usando o método de otimização Nelder-Mead, apresenta benefı́cios em relações a
soluções comerciais existentes, já que estas, muitas vezes, operam como “caixas pretas” e não
são ferramentas especı́ficas para este problema. Dessa forma, o presente Trabalho permitiu
uma maior transparência e controle sobre o processo de otimização dos parâmetros de controle
de estoque. Além disso, a implementação do modelo de simulação-otimização representa uma
contribuição significativa para a otimização de parâmetros de estoque em problemas comple-
xos de produção, como o SELSP. Essa abordagem flexı́vel e acessı́vel não apenas oferece uma
ferramenta de código aberto para resolver esse desafio, mas também busca oferecer maior aces-
sibilidade e independência de soluções comerciais. Com isso, o trabalho traz contribuições para
a comunidade acadêmica e incentivos à indústria na busca por soluções eficazes no controle
de estoques, já que o cenário do problema estudado espelha muitas indústrias, como as áreas
quı́mica, cosmética e têxtil, evidenciando a relevância prática da pesquisa para a indústria.

Palavras-Chave – Controle de estoque, Simulação-otimização, SELSP, Indústria de pro-
cessos, Processos contı́nuos



ABSTRACT

This work addresses the stock control parameter calibration problem in the context of the
Stochastic Economic Scheduling Problem (SELSP), considering a batch production line with
multiple products. To address this issue, a simulation-optimization model was developed using
Python, and four distinct search/optimization methods (Random Search, Nelder-Mead, Gene-
tic Algorithm, and Ant Colony Optimization) were tested with this model. To calibrate these
algorithms, a calibration experiment plan was developed for each search method. Subsequen-
tly, with the calibrated methods, a factorial experiment was conducted to assess and compare
the performance of the algorithms. Through an analysis of variance of the results obtained in
the experiments, it was observed that the Nelder-Mead algorithm proved to be the most ef-
ficient in terms of results (e.g., costs and service level), proposing cost solutions up to 24%
lower than those of other methods, in addition to showing greater ease in calibrating its hy-
perparameters. The approach adopted in this work, which resulted in the development of a
simulation-optimization model in Python using the Nelder-Mead optimization method, offers
benefits compared to existing commercial solutions, which often operate as “black boxes” and
are not specific tools for this problem. Thus, this work allowed for greater transparency and con-
trol over the optimization process of stock control parameters. Furthermore, the implementation
of the simulation-optimization model represents a significant contribution to the optimization of
stock parameters in complex production problems, such as SELSP. This flexible and accessible
approach not only provides an open-source tool to solve this challenge but also seeks to offer
greater accessibility and independence from commercial solutions. Therefore, this work con-
tributes to the academic community and encourages the industry to seek effective solutions in
stock control, as the studied problem scenario mirrors many industries, including the chemical,
cosmetic, and textile sectors, highlighting the practical relevance of the research for the industry

Keywords – Inventory control, Simulation-optimization, SELSP, Process industry, Conti-
nuous processes
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37 Gráfico Q-Q de resı́duos padronizados. . . . . . . . . . . . . . . . . . . . . . . 96
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2 Módulo de vendas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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2.1 Controle de estoque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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1 INTRODUÇÃO

Neste capı́tulo, apresenta-se uma contextualização do trabalho, seguida da definição do

problema e dos objetivos principais. A seguir, apresentam-se a justificativa para a realização

deste trabalho e a sua estrutura.

1.1 Contexto

O controle de estoques é parte essencial para o gerenciamento de diversos negócios. O

correto dimensionamento e monitoramento dos nı́veis de estoque em uma empresa pode afetar

diretamente tanto os resultados operacionais quanto os financeiros da organização. Uma tomada

de decisão assertiva em relação a polı́ticas de reposição e tamanhos dos lotes pode garantir à

empresa elevados nı́veis de serviço, sem onerar suas finanças de forma desnecessária.

Por outro lado, ineficiências no controle de lotes podem gerar atrasos ou perdas de pedidos

e consequente insatisfação de seus clientes, resultando em perda de receita e/ou aumento de

custos da operação (i.e. custo de manutenção de estoque, custo de venda perdida, custo de

oportunidade, etc).

Por isso, pesquisadores e empresas têm dado grande atenção ao estudo de problemas de

controle de estoque, o que tem motivado a produção de estudos acadêmicos e o desenvolvimento

de softwares voltados para soluções industriais.

Nesse sentido, a calibração dos parâmetros de controle de estoque tem se tornado um impor-

tante processo na gestão das organizações. Essa prática visa a ajustar e otimizar os parâmetros

que definem os pontos de reposição, as polı́ticas de reabastecimento e a frequência de pedidos

de forma a atingir os nı́veis ideais de estoque médio, equilibrando a disponibilidade de produtos

com os custos associados ao seu armazenamento.

Uma possı́vel abordagem para a calibração do controle de estoques é a utilização de

métodos de simulação e otimização, principalmente nas situações em que não há uma expressão

analı́tica satisfatória para a função objetivo. Por meio dessa metodologia, que relaciona as

variáveis de decisão (parâmetros de controle de estoque) e a função objetivo (custo total de es-

toque), é possı́vel simular diferentes cenários e verificar, para cada configuração de parâmetros

de controle, o impacto no sistema. Com o auxı́lio do modelo de otimização, buscam-se melho-
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res soluções com base nos resultados obtidos anteriormente.

Nesse contexto, o presente estudo abordará a calibração dos parâmetros de controle de

estoques de produtos acabados, em uma linha de produção contı́nua, utilizando a abordagem

de simulação-otimização para determinar os valores desses parâmetros de forma a balancear

objetivos operacionais e financeiros de um sistema de produção.

1.2 Formulação do problema

O presente Trabalho de Formatura aborda o problema de controle de estoque conhecido na

literatura por Stochastic Economic Lot Scheduling Problem (SELSP). O problema consiste na

programação de uma máquina capaz de produzir N produtos, mas apenas um tipo de cada vez

(i.e. uma máquina com produção em lotes). Essa configuração exige que haja uma decisão a

ser tomada toda vez que é concluı́do um lote de produção, sendo preciso decidir qual será o

próximo SKU (Stock Keeping Unit) a entrar em produção e qual a quantidade a produzir.

Embora, tradicionalmente, o SELSP consista na determinação de uma sequência de

produção e no dimensionamento dos lotes (potencialmente fixos) para a minimização do custo

médio total, o presente trabalho aborda esse problema de forma diferente. Tendo em vista

os modelos clássicos de ponto de pedido, o problema abordado por esse Trabalho de Forma-

tura passa a ser a determinação dos parâmetros de controle de estoque que minimizam o custo

médio total. Essa abordagem proposta, embora mais simples, torna mais viável a aplicação do

problema em casos reais.

Durante a produção, primeiramente, verificam-se quais são os SKU’s que estão abaixo

de seus respectivos pontos de reabastecimento, si. Em seguida um produto é escolhido para

ser produzido com base em seu tempo de cobertura (i.e. Nı́vel de estoque atual ÷ demanda

esperada), sendo os produtos com menor cobertura os mais prioritários (Lowest Days of Supply

- LDS). O tamanho do lote do produto é definido pelo nı́vel de estoque máximo, Si, do produto

e seu nı́vel de estoque atual. Note que caso ocorram pedidos durante a produção do lote, o

nı́vel de estoque máximo não será atingido após a finalização do lote. Ainda, destaca-se que a

produção de um lote não pode ser interrompida após seu inı́cio e caso não existam itens abaixo

do ponto de abastecimento, a produção fica ociosa.

Sendo assim, o problema a ser resolvido é a determinação dos valores dos parâmetros de

estoque máximo, Si, e o ponto de reabastecimento, si, para cada um dos N produtos manufatu-

rados na fábrica (i.e. (si, Si) ∀ i = 1, 2, ..., N ) para minimizar o custo médio total de estoque. A

solução desse problema não pode ser encontrada de forma analı́tica e será abordada pelo autor
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por meio de um método de simulação-otimização.

Para sistemas de produção com múltiplos produtos cujas demandas são estacionárias, a

determinação dos parâmetros de estoque torna-se complexa (Figura 1), devendo levar em

consideração diversos outros fatores como: tempos de setup, número de produtos, polı́ticas

de priorização de produtos, entre outros. Pela Figura 1, é possı́vel perceber que um dimen-

sionamento equivocado dos parâmetros de controle de estoque pode levar à falta de estoque,

mesmo que a taxa de utilização do setor de produção esteja abaixo de seu nı́vel máximo.

Em geral, a calibração dos parâmetros de estoque na indústria é feita por meio de softwa-

res desde os mais simples, como o Excel (BARRY; JAY; CHUCK, 2017), até softwares mais

robustos comercializados por diferentes empresas, tais como o OptQuest, comercializado pela

OptTek System Inc. Contudo, as diferentes alternativas restringem a exploração do presente pro-

blema estudado devido a limitações dos próprios softwares em termos de ferramentas/recursos,

à falta de clareza sobre o método de otimização utilizado, a limitações de integrações entre dife-

rentes soluções (ex: softwares diferentes para simulação e otimização) e, de forma mais prática,

à necessidade de se adquirir licenças para utilizá-los.

Figura 1: Exemplo de monitoramento do nı́vel de estoque de quatro produtos com parâmetros
de controle (s, S) para uma demanda estocástica.

Fonte: Elaborado pelo autor.
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1.3 Objetivos do trabalho

O objetivo deste Trabalho de Formatura consiste na identificação e implementação de

métodos numéricos eficientes para a otimização dos parâmetros de controle de estoque

(si, Si) ∀ i = 1, 2, ..., N , no contexto do problema descrito na seção 1.2.

Além disso, o trabalho busca oferecer uma solução de implementação em um software livre

e de código aberto, sem a dependência de softwares pagos. Assim, a solução proposta almeja a

implementação de um modelo de simulação junto a um método de busca de soluções.

Dessa forma, o modelo de simulação-otimização proposto neste estudo será implementado

em Python, por meio do qual será possı́vel propor uma solução em código aberto para avaliar

os métodos de otimização e busca a partir de indicadores de desempenho dos algoritmos (ex:

convergência e tempo de execução) e indicadores desempenho do próprio problema (ex: custos

e nı́vel de serviço).

1.4 Relevância

O presente Trabalho de Formatura traz contribuições para o estudo de controle de estoque

e pode ser adaptado e aplicado de forma prática na indústria. O problema apresentado na seção

1.2, com múltiplos produtos e uma única linha de produção em lotes é semelhante à realidade

enfrentada pela indústria de processos. Nesse tipo de indústria, bens de consumo ou produtos

intermediários são produzidos por meio da transformação da matéria-prima via uma série de

processos fı́sicos, quı́micos e biológicos, tipicamente com produções em batch. Alguns exem-

plos de produtos comumente produzidos por meio deste método são:

1. Produtos quı́micos: resinas plásticas e revestimentos;

2. Produtos alimentı́cios: produtos de panificação, molhos, condimentos, bebidas alcoólicas

e não alcoólicas, etc;

3. Produtos farmacêuticos: medicamentos;

4. Produtos cosméticos: loções, cremes e outros produtos de beleza;

5. Tintas e revestimentos: tintas e revestimentos para fins decorativos e industriais;

6. Produtos têxteis: camisetas, calças, vestidos, uniformes esportivos, etc.
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Devido à grande quantidade de setups dos equipamentos para a troca de produtos em linhas

de produção como essas, percebe-se que há um problema inerente a esse modo de produção

relacionado à otimização do dimensionamento dos lotes de produção e ao sequenciamento dos

produtos nas máquinas. Dessa forma, diversas contramedidas são implementadas pelas empre-

sas de forma a minimizar custos e o tempo perdido com setup dos equipamentos e maximizar

o nı́vel de serviço, assim como evidenciado no trabalho de Tomotani e Mesquita (2017), que

realizaram um levantamento das práticas na indústria.

Sobre a implementação em Python, em código aberto, do modelo de otimização-simulação

proposto, apresenta-se um modelo customizado para a resolução do SELSP, eliminando a de-

pendência de softwares genéricos e pagos já existentes no mercado, tais como o AnyLogic

(simulação) e o OptQuest (otimização). Esses softwares dificultam o acesso a soluções com-

putacionais para o problema estudado e limitam a usabilidade de ferramentas para aprimorar a

busca de soluções para o problema.

Dessa forma, o estudo em questão contribui tanto para a melhoria dos métodos de con-

trole de estoque quanto para a disponibilização de soluções computacionais para o problema

abordado.

1.5 Estrutura do trabalho

Este Trabalho de Formatura está organizado nos seguintes capı́tulos:

1. Introdução: Define o problema, os objetivos e a relevância do estudo;

2. Fundamentação teórica: Traz uma revisão bibliográfica abordando o controle de esto-

que, modelos de simulação-otimização e métodos numéricos de otimização aplicáveis ao

problema de Stochastic Economic Lot Scheduling Problem (SELSP);

3. Método: Apresenta o método de solução empregado, as lógicas dos modelos de simulação

e otimização para a resolução do problema estudado;

4. Modelo de Simulação: Detalha os modelos conceitual e computacional de simulação e

apresenta a validação e verificação desse modelo;

5. Modelo de Simulação-Otimização: Apresenta em detalhes os métodos de busca imple-

mentados, seus experimentos de calibração e suas implementações junto ao modelo de

simulação;
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6. Planejamento dos Experimentos de Comparação: Traça o plano dos experimentos

de comparação realizados, identificando os parâmetros a serem variados e as demais

variáveis do problema;

7. Discussão dos Resultados: Discute os resultados obtidos com os experimentos de

comparação realizados;

8. Conclusões: Este último capı́tulo traz um resumo dos principais resultados, as limitações

do estudo e discute perspectivas futuras de possı́veis extensões para o estudo.
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2 FUNDAMENTAÇÃO TEÓRICA

Neste capı́tulo, apresenta-se uma revisão bibliográfica, na qual foram explorados o tema de

controle de estoque de forma mais geral e, de forma mais profunda, os problemas de estoque

para múltiplos produtos. Além disso, foram levantados os principais métodos de busca que

podem ser aplicados ao problema estudado.

2.1 Controle de estoque

Nesta seção, explora-se os principais conceitos relacionados ao controle de estoque, abor-

dando questões de custo e polı́ticas de controle, que são essenciais para a construção do modelo

de simulação proposto no Trabalho.

2.1.1 A importância do controle de estoques

De forma geral, a maioria dos setores econômicos lida com questões ligadas à gestão de

cadeias de suprimentos, de forma que o correto controle do fluxo de material é um fator im-

portante para a manutenção de um bom relacionamento entre as empresas, seus fornecedores

e seus clientes. Sendo assim, o controle de estoque é parte relevante para as estratégias das

empresas, pois além de influenciar diretamente stakeholders externos à empresa, também tem

forte impacto em diversos setores internos.

É comum que se tenha a visão de que os sistemas de controle de estoques tenham como

principal objetivo a gestão de conflitos de interesse em uma fábrica. Se, por um lado, o setor

de finanças tende a preferir que a fábrica opere com estoques mı́nimos para que mais capital

esteja disponı́vel para outros investimentos, o setor comercial, em sentido contrário, prefere

operações com grandes estoques para garantir entregas de pedidos de forma rápida e completa.

Ao mesmo tempo, o gerente de produção dará preferência à produção de grandes lotes para

evitar custos e paradas para a realização de setups nas máquinas, enquanto o setor comercial

prefere estoques com lotes menores para ter nı́veis de estoque equilibrados entre os produtos de

forma a aumentar o nı́vel de serviço da empresa (AXSÄTER, 2015).

Em meio a esses conflitos e dada a importância estratégica do assunto, as empresas rea-
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lizam grandes investimentos no setor de estoques, buscando a implementação de ferramentas

de controle mais eficientes, de forma a reduzir seus custos e manter ou melhorar seu nı́vel de

serviço (BARRY; JAY; CHUCK, 2017).

Além disso, a complexidade do assunto têm aumentado nas últimas décadas, atraindo pes-

quisadores e empresas a criarem métodos modernos de controle de estoques por meio de mode-

los de decisão complexos que aliam a experiência e a tecnologia, deixando de lado a aplicação

de regras de decisão simples usados há décadas (AXSÄTER, 2015).

2.1.2 Custos de Estoque

Uma abordagem comum do controle de estoques é trabalhar com a minimização do custo

total. Nessa abordagem, diversos custos são considerados, mesmo que alguns não se materiali-

zem em fluxos de caixa.

A seguir, serão introduzidos os principais custos ligados ao problema de estoques, tais como

o custo de manutenção do estoque (holding cost), custo de setup (setup cost) e custo de falta

(shortage cost).

2.1.2.1 Custo de manutenção do estoque (Holding cost)

A ideia do holding cost está ligada, principalmente, ao custo de oportunidade de outros

investimentos, mas também considera outros fatores como custos de manuseio de cargas, de

armazenamento, de danos ao produto, de obsolescência e eventuais taxas. Em suma, todos os

custos variáveis devem ser englobados por essa categoria.

A posse de grandes estoques por uma empresa incorre em diferentes custos que oneram a

parte financeira da empresa e podem (ou não) aumentar a complexidade operacional, exigindo

maiores espaços, mais operadores e mais equipamentos, por exemplo. Além disso, o capital

investido para garantir a posse desse estoque poderia estar alocado em outros ativos, seja in-

vestimentos visando a um maior retorno financeiro ou mesmo ativos de maior liquidez para a

empresa (ex: caixa) (AXSÄTER, 2015).

Em geral, o custo de manutenção é calculado de forma unitária (por produto) e dentro de

espaço de tempo. Ainda, de forma a evitar o rateamento dos custos operacionais e simplifi-

car o cálculo, esse valor é comumente relacionado a uma porcentagem do custo do material

armazenado.
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2.1.2.2 Custo de setup (Setup cost)

O reabastecimento dos estoques de produtos acabados ou de matéria-prima costuma estar

associado a um custo fixo, independente do tamanho do lote. A esse custo é dado o nome de

setup cost, que pode levar em conta a compra de materiais ou a produção de itens.

Para esse custo são considerados fatores como custos de preparo e treinamento, custos

administrativos para gestão de pedidos, custos associados a transporte e manuseio de carga,

tempo de setup, entre outros (AXSÄTER, 2015).

2.1.2.3 Custo de falta (Shortage cost)

Caso uma demanda não seja atendida devido a estoque insuficiente, o cliente tem duas

possı́veis alternativas: deixar seu pedido como pendente e receber em completude assim que

possı́vel ou cancelar o pedido e escolher outro fornecedor. Em ambos os casos, diversos custos

são incorridos pela empresa fornecedora.

Um pedido pendente exigirá, em geral, uma mobilização adicional da empresa fornecedora

que pode ser traduzida em descontos ao cliente, fretes mais rápidos e mais caros, mão de obra

adicional (na operação e no administrativo) etc. Além disso, embora seja difı́cil mensurar, há

um desgaste da relação com o cliente, que pode ser prejudicial para os negócios da empresa

no longo termo. Evidentemente, caso o cliente opte por um outro fornecedor, a empresa deixa

de receber a remuneração pela venda do produto e o desgaste com o cliente é ainda maior

(AXSÄTER, 2015).

Para o setor de produção, a falta de materiais e componentes pode gerar ociosidade de linhas

de produção e atrasos, sendo necessário reorganizar as ordens de produção.

A dificuldade de precisar o custo associado à ruptura de estoques faz com que seja comum

a associação desse custo a nı́veis mı́nimos de serviço da fábrica.

2.1.3 Polı́ticas de revisão de estoque

Os modelos de controle de estoque podem ser classificados em duas grandes classes: re-

visão contı́nua e periódica.

O modelo de revisão contı́nua estabelece uma polı́tica de acompanhamento contı́nuo da

posição do estoque. Assim, logo que o nı́vel de estoque atinge o nı́vel de reposição, s, um

pedido de tamanho fixo Q é feito, conforme representado na Figura 2 (AXSÄTER, 2015).
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Note que o o ponto de reabastecimento, deve levar em consideração fatores como o lead

time de entrega do fornecedor, L, e outros fatores ligados à variação da demanda.

Esse modelo de revisão apresenta como vantagem a possibilidade de trabalhar com estoque

de segurança, SS, reduzido quando comparado a modelos de revisão periódica (AXSÄTER,

2015).

Figura 2: Representação da polı́tica de revisão contı́nua.

Fonte: Elaborado pelo autor.

Ainda, além da polı́tica de revisão de estoques contı́nua, podem ser estabelecidas polı́ticas

de reabastecimento de estoques, tais como a polı́tica (R, Q) e a (s, S).

A polı́tica (R, Q) estabelece um ponto de reabastecimento R e um tamanho de lote Q, de

forma que assim que o estoque atinge uma posição R, um lote de tamanho Q é produzido.

Note que em um sistema com reabastecimento (R, Q), em geral, o pedido pelo material

ocorrerá quando a posição do estoque já está abaixo do nı́vel R, fazendo com que o estoque não

atinja o valor de R +Q (AXSÄTER, 2015).

A polı́tica de reabastecimento (s, S) é similar à polı́tica (R, Q) e também estabelece um

ponto de reabastecimento, aqui denominado como s, que ativa o pedido por um novo lote.

Porém, nesse modelo, o lote pedido tem tamanho variável e é determinado pela quantidade

necessária para que se atinja o nı́vel de estoque máximo S (order-up-to) (AXSÄTER, 2015).

Dando continuidade às polı́ticas de revisão de estoque, a outra grande classe é o modelo de

revisão periódica. Esse modelo estabelece uma polı́tica de acompanhamento com verificações
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periódicas da posição do estoque em intervalos fixos de tempo T . Assim, a cada perı́odo T , o

nı́vel de estoque é verificado e um pedido de tamanho variado Qi é feito, de forma a restabelecer

o estoque até seu nı́vel máximo S, conforme ilustrado na Figura 3 (AXSÄTER, 2015).

Nesse modelo de revisão é preciso estabelecer nı́veis de estoques de segurança maiores do

que no modelo de revisão periódica. Porém, uma das principais vantagens desse modelo de

revisão é a escalabilidade do sistema de controle de estoque, uma vez que ele reduz de forma

considerável o custo com inspeções da posição do estoque, o que permite o acompanhamento

de múltiplos itens de forma mais prática (AXSÄTER, 2015).

Figura 3: Representação da polı́tica de revisão periódica.

Fonte: Elaborado pelo autor.

2.2 Problemas de dimensionamento de lotes

Esta seção dedica-se à definição e análise de problemas de estoque, além de levantar os prin-

cipais métodos que têm sido utilizados para a resolução do problema de Stochastic Economic

Lot Scheduling Problem (SELSP).
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2.2.1 Problema clássico do Lote econômico de compra

O modelo mais antigo (e simples), ligado ao problema de controle de estoque é o problema

do Lote Econômico de Compra, também conhecido como Economic Order Quantity (EOQ).

Esse modelo foi aplicado inicialmente em meados de 1913, por Ford W. Harris, para o dimen-

sionamento de lotes de produção (HOPP; SPEARMAN, 2011).

O modelo proposto traz diversas simplificações, que muitas vezes não são aplicáveis de

forma prática, mas que permitem que seja possı́vel descrever de forma analı́tica o tamanho do

lote de compra de um produto.

Para o modelo EOQ, assume-se que (HOPP; SPEARMAN, 2011):

1. A produção ocorre de forma instantânea e não há limitações de capacidade para a

produção do lote completo;

2. A entrega do pedido ocorre de forma imediata, não havendo intervalo de tempo entre a

produção e a entrega do produto para satisfazer a demanda;

3. A demanda é determinı́stica, desprezando quaisquer incertezas em relação aos tamanhos

dos pedidos e seu intervalo de ocorrência;

4. A demanda é constante durante todo o perı́odo;

5. O inı́cio da produção incorre em um custo fixo de setup, independentemente do tamanho

do lote (de produção);

6. Os produtos são analisados de forma independente, assim, deve-se considerar a existência

de apenas um produto ou assume-se que não há compartilhamento de recursos, como

máquinas e operadores, entre os produtos.

Para computar o tamanho ótimo do lote, Q∗, é necessário o conhecimento das seguintes

variáveis do problema:

D = A taxa de demanda (un./perı́odo)

c = O custo unitário de produção (R$/un.)

A = O custo fixo de pedido/setup do lote (R$)

h = O custo unitário de manutenção do estoque
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Assim, diante das simplificações mencionadas e adotando a notação indicada acima, pode-

se traçar a evolução do nı́vel de estoque conforme mostrado na Figura 4.

Figura 4: Evolução do nı́vel de estoque para o modelo EOQ.

Fonte: Adaptado de Hopp e Spearman (2011).

A linearidade e a natureza determinada do problema permitem descrever de forma analı́tica

a função de custo para o problema. Assim, para um dado perı́odo, pode-se deduzir o custo total,

Y , da seguinte forma (HOPP; SPEARMAN, 2011):

Y (Q) =
hQ

2︸︷︷︸
Custo de manutenção do estoque

+
AD

Q︸︷︷︸
Custo de setup

+ cD︸︷︷︸
Custo de produção

(2.1)

A equação 2.1 permite traçar as curvas para o custo total de estoque, assim como para cada

componente do custo, como mostrado na Figura 5. Pelo gráfico, é possı́vel notar que há um

trade-off entre o custo de setup e o custo de manutenção do estoque e, conforme aumenta-se o

tamanho do lote, o custo de manutenção fica cada vez mais predominante no custo unitário de

estoque do produto.

Além disso, por meio da equação 2.1, é possı́vel derivar a clássica fórmula para o tamanho

ideal do lote, Q∗, ao minimizar-se o custo total de estoque:

Q∗ =

√
2AD

h
(2.2)

Duas premissas importantes limitam o modelo proposto por Harris: 1) a existência de um

único produto e 2) a demanda constante. Essas hipóteses simplificadores, em muitos casos,

comprometem a aplicação da fórmula 2.2 no contexto real das indústrias.



29

Figura 5: Exemplo de curvas de custos unitários para o modelo EOQ.

Fonte: Adaptado de Hopp e Spearman (2011).

Todavia esse clássico modelo trouxe importantes noções sobre o trade-off entre o custo de

setup e o custo de manutenção de estoque, assim como o trade-off entre o tamanho de lote de

produção (ou compra) e o tamanho do inventário (HOPP; SPEARMAN, 2011).

Nesse contexto, os avanços no estudo de controle de estoques permitiram o surgimento de

novos modelos que permitem o relaxamento de algumas das premissas adotadas pelo modelo

EOQ, como será visto a seguir.

2.2.2 Re-Order Point (ROP) model

Dando continuidade ao problema estabelecido pelo modelo EOQ, o modelo ROP também

considera o controle de um único item, porém, alternativamente, relaxa-se a premissa de que a

demanda do produto é constante.

Assim, para o modelo ROP, são assumidas as seguintes premissas (NAHMIAS; OLSEN,

2015):

1. A demanda é aleatória e estacionária, ou seja, embora não seja possı́vel determinar a
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demanda exata para cada perı́odo, é possı́vel ter conhecimento da esperança do valor da

demanda para certo perı́odo de tempo;

2. Rupturas de estoque são permitidas, podendo haver perda de venda ou atraso no pedido;

3. Considera-se um único item e assume-se que as demais premissas são compatı́veis com

o modelo EOQ.

A preocupação do modelo passa então a ser a determinação de duas variáveis de decisão in-

dependentes: a do estoque mı́nimo para a realização do pedido do lote para que as incertezas da

demanda sejam absorvidas; e o tamanho do lote a ser produzido/pedido (HOPP; SPEARMAN,

2011).

Adicionalmente, é possı́vel segmentar o modelo ROP em outros 2 modelos (HOPP; SPE-

ARMAN, 2011):

• Base stock model: Nesse modelo, o estoque é reabastecido com uma unidade por vez,

conforme a demanda ocorre, e o problema a ser resolvido é a determinação do ponto de

reabastecimento.

• (R, Q) model: Nesse modelo, considera-se uma polı́tica de acompanhamento de estoque

contı́nuo, de forma que quando o estoque atinge um nı́vel R, um lote de tamanho Q é

solicitado. Em seguida, após certo perı́odo de tempo l, durante o qual rupturas de estoque

podem ocorrer, o lote é recebido. Assim, o problema a ser solucionado é a determinação

dos parâmetros R e Q.

2.2.3 Economic Lot Scheduling Problem (ELSP)

Talvez uma das simplificações mais limitantes do modelo EOQ seja considerar apenas um

tipo de produto ou, caso existam múltiplos produtos, cada SKU pode ser analisado de forma

independente, uma vez que não compartilham recursos na fábrica (AXSÄTER, 2015).

Extensamente estudado na literatura, o Economic Lot Scheduling Problem (ELSP) re-

laxa essa premissa e busca determinar programações cı́clicas para sistemas de produção com

múltiplos itens de demandas constantes, que compartilham um mesmo recurso.

Nesse problema, busca-se não apenas determinar quanto deve ser produzido de cada pro-

duto, mas também quando cada um dos itens deve ter sua produção iniciada.
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Sendo assim, no ELSP, tem-se o interesse em programar a produção de múltiplos produtos

em uma única máquina de forma a minimizar os custos de estoque, tais como os custos de setup

e de manutenção do estoque.

Assim como feito para o modelo EOQ, listam-se abaixo as principais premissas do ELSP

(LARRAÑETA; ONIEVA, 1988):

1. Há apenas um recurso disponı́vel;

2. Um único produto pode ser produzido por vez;

3. Os custos e tempos de setup são constantes e podem ser particulares para cada produto;

4. As taxas de produção são conhecidas e constantes, podendo ser particulares para cada

produto;

5. As demandas são conhecidas e constantes, podendo ser particulares para cada produto.

Dessa forma, tendo em vista as hipóteses acima e assumindo as restrições de que não há

ruptura de estoque e de que toda a demanda é atendida, assume-se que o tamanho das batches

para cada produto e os tempos de ciclos são mantidos constantes. Além disso, esses fatores

dependem dos parâmetros de estoque e das polı́ticas de acompanhamento de estoque adotados

pela fábrica.

Ainda, ressalta-se o fato de que o Economic Lot Scheduling Problem pode ser modelado

com programação matemática e é conhecido como um problema NP-hard (CHUNG; CHAN,

2012), ou seja, ainda não é possı́vel encontrar um solução ótima para o problema em tempo po-

linomial. Essa dificuldade impõe limites computacionais para a resolução do problema, levando

à busca de soluções aproximadas por meio da utilização de heurı́sticas.

2.2.4 Stochastic Economic Lot Scheduling Problem (SELSP)

Naturalmente, o Stochastic Economic Lot Scheduling Problem (SELSP) é uma variação do

ELSP, no qual incertezas são adicionadas ao problema por meio de fatores estocásticos que po-

dem estar relacionados às demandas, tempos de ciclo, tempos de setup ou alguma combinação

desses fatores.

Dessa vez, o interesse é de calibrar os valores dos parâmetros de estoque e a programação

dos N produtos que compartilham a utilização da única máquina disponı́vel.
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A incerteza adicionada ao problema em relação à demanda e aos tempos de processa-

mento aumenta significativamente a complexidade da programação matemática, uma vez que

a determinação da quantidade a ser produzida por cada produto e a sequência de produção

dos itens deixam de ser fixas. Sendo assim, é necessário estabelecer polı́ticas de estoque para

definir priorizações e quantidades a serem produzidas para garantir nı́veis de serviço e custos

satisfatórios (AXSÄTER, 2015).

Embora esse dinamismo implique em um aumento de complexidade, o problema represen-

tado pelo SELSP é muito próximo da realidade enfrentada por várias empresas, principalmente

para a indústria de processos. Ainda, a resolução do SELSP depende da formulação proposta ao

problema, que pode ser orientada à definição de sequenciamentos de produtos ou à calibração

de parâmetros de estoque.

No presente estudo, adota-se a segunda abordagem, usando a ideia de ponto de pedido para

reposição de estoque e voltando esforços para a calibração dos parâmetros de estoque (s, S).

De toda forma, a busca por métodos eficientes que atinjam bons resultados (i.e. métodos

que escolham bons valores para s e S, por exemplo) para a resolução do SELSP é impor-

tante para integrar os estudos da literatura com os problemas reais de controle de estoques

enfrentados pelas empresas. Esses esforços permitem que as empresas possam tomar decisões

informadas/embasadas sobre sua produção e polı́ticas de estoque.

2.3 Algoritmos de busca

Nesta seção, apresentam-se alguns algoritmos de busca de mı́nimos que podem ser usados

na busca de soluções para otimização dos parâmetros do problema definido no capı́tulo 1.

2.3.1 Busca exaustiva

O método de busca exaustiva, também conhecida no literatura como método de “força

bruta”, é uma das abordagens mais simples e genéricas para a busca de soluções em proble-

mas de otimização (HAUPT; HAUPT, 2004). Note, porém, que esse método é aplicável em

problemas cujo espaço de soluções é enumerável. Dessa forma, para problemas em espaços

contı́nuos, é preciso discretizar o espaço criando malhas discretas com intervalos suficiente-

mente pequenos.

Nesse método, todos os possı́veis candidatos do espaço de soluções são testados e avaliados

para determinar-se a melhor solução, como ilustrado pelo Algoritmo 1.
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Algoritmo 1 Busca exaustiva
1: função BUSCA EXAUSTIVA(S) ▷ Onde S é o conjunto de todas as soluções candidatas

2: sbest ← None ▷ Melhor solução

3: fbest ←∞ ▷ Custo da melhor solução

4: Para cada s em S faça

5: fs ← AVALIAR(s) ▷ Calcula o custo para o candidato s

6: Se fs < fbest Então

7: fbest ← fs

8: sbest ← s

9: Fim Se

10: Fim Para

11: Imprima sbest, fbest

12: Fim função

Embora seja facilmente implementada e garanta a identificação da solução-ótima, caso

exista, a busca exaustiva é custosa em tempo e poder computacional. Note que para problemas

complexos o número de soluções candidatas cresce exponencialmente conforme o tamanho do

problema aumenta, tornando a busca por força bruta difı́cil de ser praticada.

Assim, seja Nvar o número de variáveis e Qi os possı́veis valores assumidos pela variável

i, o número de combinações possı́veis, Ncomb, a serem avaliadas é dado por (HAUPT; HAUPT,

2004):

Ncomb =
Nvar∏
i=1

Qi (2.3)

Note ainda que em alguns casos é possı́vel estabelecer um subconjunto do espaço de

soluções, onde acredita-se que a solução ótima possa ser encontrada, de forma a diminuir o

número de soluções avaliadas. Porém, essa estratégia não garante que a solução encontrada

seja um mı́nimo global, sendo, portanto, um possı́vel mı́nimo local.

Para exemplificar esse fato, toma-se o exemplo da função seguinte função f : (R,R)→ R:

f(x, y) = 3 · (1− x)2 · e−x2−(y+1)2 − 10 · (x
5
− x3 − y5) · e−x2−y2 − 1

3
· e−(x+1)2−y2

Tendo em vista que f é uma função contı́nua definida sobre todo o plano (R,R), é possı́vel

definir uma malha para o plano (x,y) com intervalos de 0,1 entre dois pontos consecutivos em

uma mesma direção e limitados ao intervalo de [−5, 5]. A malha construı́da é formada por 1012
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pontos, todos possı́veis candidatos a um mı́nimo global que estão representados na Figura 6.

Figura 6: Representação da curva f .

Fonte: Elaborado pelo autor.

A análise gráfica da função permite a identificação de dois pontos crı́ticos de mı́nimo. O

primeiro deles, com coordenadas próximas a (-1,35; 0,20), é um mı́nimo local e o segundo,

de coordenadas (0,23; -1,63) aproximadamente, é um mı́nimo global. Ambos os pontos são

representados no gráfico de contorno da função f na Figura 7.

Assim, caso um subconjunto a ser explorado fosse definido apenas para o semi-plano S1 tal

que S1 : {(x, y) | y ≥ 0}, o mı́nimo encontrado pela busca exaustiva seria um mı́nimo local,

apesar de reduzir pela metade o tempo de execução do algoritmo.

Portanto, o método busca por força bruta é propı́cio apenas para problemas pequenos, com

um número pequenos de variáveis e cujos intervalos de possı́veis valores são limitados a um

espaço pequeno. Além disso, busca por força bruta é interessante em casos nos quais a facili-

dade de implementação do método de busca é mais relevante do que a eficiência do método.
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Figura 7: Representação do contorno de f .

Fonte: Elaborado pelo autor.

2.3.2 Nelder-Mead

Introduzido em 1965 pelos estatı́sticos John Ashworth Nelder e Roger Mead, o algoritmo

de busca Nelder-Mead, também conhecido na literatura como Downhill Simplex Method, é um

método de busca heurı́stico que dispensa a necessidade de cálculos de derivadas. Essa carac-

terı́stica o torna atrativo para implementação em problemas em que não é possı́vel descrever de

forma analı́tica a função objetivo do problema (HAUPT; HAUPT, 2004).

Apesar do nome, o algoritmo não é relacionado com o método Simplex, mas mantém a ideia

de construir um simplex a cada iteração. Assim, uma forma geométrica elementar formada em

N dimensões e possuindo N + 1 lados (ou vértices) é produzida para cada iteração, como um

triângulo em um problema de duas dimensões.

O objetivo do método é de mover o simplex até a região do mı́nimo buscado e, então,

contrair o simplex em torno do mı́nimo até que atinja-se a tolerância do erro pré-estabelecida

(HAUPT; HAUPT, 2004).
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O método de busca é iniciado com um conjunto de N + 1 pontos que formam o simplex

inicial, de forma que apenas um dos pontos, P0, é especificado pelo usuário, sendo os outros

pontos determinados pela seguinte equação (HAUPT; HAUPT, 2004):

Pn = P0 + cs · en (2.4)

Onde:

Pn : Ponto n do simplex inicial (∀ n, n = 1, 2, ..., N )

cs : Constante de escala

en : Vetor unitário de dimensão N na direção n

Além disso, define-se os seguintes parâmetros (JIN et al., 2019):

α : Fator de Reflexão (tipicamente α = 1)

β : Fator de Expansão (tipicamente β = 2)

γ : Fator de Contração (tipicamente γ =
1

2
)

ρ : Fator de Encolhimento (tipicamente ρ =
1

2
)

Para exemplificar o funcionamento do método, toma-se novamente o problema de duas di-

mensões. Assim, inicia-se a busca com a criação de triângulo inicial de vértices PA = (xA, yA),

PB = (xB, yB) e PC = (xC , yC) (Figura 8), com o qual, inicialmente, ordena-se os custos em

ordem crescente para cada vértice:

f(PB) ≤ f(PC) ≤ f(PA)

Para cada iteração, define-se os ı́ndices h, s, l para os vértices de pior, segundo pior e

melhor custo, respectivamente, para o simplex de trabalho atual:

Ph | fh = maxj fj

Ps | fs = maxj ̸=h fj

Pl | fl = minj ̸=h fj

Assim:

f(PB) ≤ f(PC) ≤ f(PA)⇔ f(Pl) ≤ f(Ps) ≤ f(Ph)
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Em seguida, ocorre a etapa de Reflexão, em que um novo ponto PD = (xD, yD) é definido

como uma reflexão do ponto com o maior custo, Ph (considerado como o ponto PA nesse

exemplo), em relação ao centroide, PI = (xI , yI), formado pelos pontos restantes (PB e PC),

conforme ilustrado na Figura 8.

PI =

∑
i ̸=A Pi

N
, N = 2 (2.5)

PD = PI + α(PI − Ph) (2.6)

Figura 8: Representação de uma iteração do Algoritmo de Nelder-Mead para um problema de
duas dimensões

Fonte: Haupt e Haupt (2004).

Caso o custo do ponto PD seja tal que:

fl ≤ f(PD) < fs ⇔ f(PB) ≤ f(PD) < f(PC),

substitui-se o ponto de maior custo, Ph, (i.e. PA no exemplo) pelo ponto PD para formar-se um

novo simplex e uma nova iteração é iniciada.

Em seguida, caso o custo de PD seja menor do que de PA (ou seja, o melhor custo até o

momento: f(PD) < fl), então é preciso fazer uma Expansão. O ponto de Expansão, PE =

(xE, yE), é tal que:

PE = PI + β(PD − PI) (2.7)

Caso o custo do ponto PE seja menor do que do ponto PD (i.e. f(PE) < f(PD)) , obtém-

se um novo simplex substituindo o ponto de pior custo, Ph (i.e. PA), pelo ponto expandido

PE e inicia-se uma nova iteração. Caso o custo de PE seja maior ou igual do ponto PD (i.e.
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f(PD) ≤ f(PE)), o novo simplex é obtido ao fazer a substituição descrita anteriormente pelo

ponto refletido PD.

Porém, caso o custo de PD seja maior ou igual ao segundo pior custo, fs (i.e. f(PD) ≥ fs),

realiza-se uma Contração. Dois pontos de Contração são estabelecidos, PF = (xF , yF ) e PG =

(xG, yG), tais que:

PF = PI + γ(PD − PI) (2.8)

PG = PI + γ(Ph − PI) (2.9)

Apenas o ponto de menor custo entre os pontos F e G é mantido. Caso o ponto escolhido

tenha custo menor do que o pior custo encontrado (i.e. f(PF ou G) < fh), substitui-se o ponto

de pior custo, Ph (i.e. PA) pelo ponto escolhido. Caso contrário, realiza-se um Encolhimento.

No processo de Encolhimento, todos os pontos, exceto o de melhor custo, Pl, são subs-

tituı́dos e o simplex sofre um Encolhimento na direção deste ponto (i.e. PB para o exemplo).

Seja P
′
n = (x

′
n, y

′
D) o ponto encolhido do ponto Pn, então os N novos pontos são tais que:

P
′

j = Pl + ρ(Pj − Pl), ∀j = 1, 2, ..., N com j ̸= l (2.10)

Caso o novo simplex formado não atinja os critérios de término do algoritmo (em geral

definido como um tamanho mı́nimo para o simplex), uma nova iteração é realizada. A solução

proposta como solução ótima é representada pelo ponto de menor custo no último simplex

formado.

Os processos de Reflexão, Expansão, Contração e Encolhimento descritos acima podem ser

observados se forma mais clara na Figura 9. Ainda, um exemplo ilustrativo do funcionamento

do algoritmo é representado na Figura 10.
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Figura 9: Representação dos processos de Reflexão, Expansão, Contração e Encolhimento do
algoritmo de Nelder-Mead para um problema de duas dimensões.

Fonte: Adaptado de Cheng e Mailund (2015).

Figura 10: Exemplo de aplicação do algoritmo de Nelder-Mead.

Fonte: Haupt e Haupt (2004).

O algoritmo de Nelder-Mead não é conhecido por sua velocidade, mas sua robustez o torna

atrativo para que seja implementado. Porém, ressalta-se o fato de que o método está exposto

ao risco de ficar preso em mı́nimos locais, o que faz necessário a combinação do método com

outros métodos de busca aleatória para diminuir esse risco (HAUPT; HAUPT, 2004).
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2.3.3 Genetic Algorithm

O método de busca de Algoritmo Genético (Genetic Algorithm - GA) é uma metaheurı́stica

para otimização combinatória que foi desenvolvida pelo pesquisador John Holland em 1975 e

é inspirada nos princı́pios de genética, seleção natural, mutação e cruzamento. Nesse método,

uma população de indivı́duos evolui sob certas restrições e apenas os indivı́duos que melhor se

adaptam ao problema (i.e. apresentam o menor custo), têm seus genes propagados nas próximas

gerações (HAUPT; HAUPT, 2004).

O algoritmo genético, assim como o algoritmo de Nelder-Mead, é um método de otimização

que dispensa a necessidade de cálculos de derivadas da função objetivo, além de poder ser

aplicado tanto para otimização de variáveis contı́nuas como discretas. Porém, uma desvantagem

comum desse algoritmo é o maior tempo necessário para atingir resultados satisfatórios quando

comparado a outros métodos de busca mais tradicionais, embora o Algoritmo Genético possa

ser aplicado em problemas nos quais esses outros métodos são incapazes de encontrar soluções

(HAUPT; HAUPT, 2004).

A cada iteração do algoritmo (também conhecido como geração), um conjunto de in-

divı́duos (a população) tem seus nı́veis de “adequação” ao problema (i.e. seus custos) com-

putados a partir da configuração de genes particular de cada indivı́duo (aqui denominado como

o cromossomo).

Cada indivı́duo representa um candidato à solução do problema e seu cromossomo é defi-

nido por um vetor 1×Nvar, no qual Nvar é o número de variáveis do problema:

Cromossomo = [x1, x2, ..., xNvar ]

Custo = f(Cromossomo) = f(x1, x2, ..., xNvar) (2.11)

O algoritmo é iniciado com uma população inicial de Npop indivı́duos representada por

uma matriz Npop ×Nvar. Em geral, a população inicial é definida de forma aleatória com base

nas restrições de valores de cada variável. Assim, seja j um gene (uma variável) qualquer do

problema:

xj,k,0 = (uj − lj) · pnorm + lj (2.12)
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Onde:

xj,k,0 : Valor inicial do gene j para o indivı́duo k

uj : Valor máximo para a variável j

lj : Valor mı́nimo para a variável j

pnorm : Número aleatório entre 0 e 1

Com a população definida, os custos de cada indivı́duo são computados e ordenados. A

definição da próxima geração de indivı́duos passa por um processo de Seleção natural para

que apenas os cromossomos mais adaptados possam sobreviver e gerar descendentes. Assim,

para cada geração, Nkeep indivı́duos sobrevivem (Nkeep < Npop) e seguem para a etapa de

acasalamento, enquanto o restante é descartado.

A decisão de quantos indivı́duos de cada geração devem ser mantidos é arbitrária. Permitir

poucos indivı́duos sobrevivam limita a disponibilidade de genes para os descendentes, enquanto

um número grande de indivı́duos sobreviventes permite que genes com performance baixas

sejam propagados. É comum que a taxa de seleção de indivı́duos seja próxima a 50% (HAUPT;

HAUPT, 2004).

Os indivı́duos que sobreviveram são agrupados em pares de forma aleatória para que pos-

sam gerar descendentes. Note que a formação desses pares pode ocorrer de outras formas,

como por exemplo fazendo priorizações a partir dos custos. Cada par de pai e mãe gera pelo

menos um descendente (em geral, cada casal produz 2 filhos) e o processo é repetido até que

Npop −Nkeep filhos sejam gerados.

Durante a etapa de acasalamento, a geração dos filhos depende dos genes dos pais que

geraram o descendente. Diferentes abordagens podem ser tomadas para definir a combinação

dos cromossomos dos pais.

Uma das abordagens mais simples é a escolha aleatória de alguns genes (pontos de acasa-

lamento) para serem trocados entre os pais. Assim, um exemplo de acasalamento é:

Pai = [x1,p, x2,p, x3,p, x4,p, ..., xNvar,p]

Mãe = [x1,m, x2,m, x3,m, x4,m, ..., xNvar,m]

Filho1 = [x1,m, x2,p, x3,m, x4,m, ..., xNvar,p]

Filho2 = [x1,p, x2,m, x3,p, x4,p, ..., xNvar,m]

Outra possı́vel abordagem é, para cada gene, a escolha aleatória de qual dos pais irá passar
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seu material genético ao filho.

O problema das abordagens mencionadas acima é que elas não adicionam informações

novas à prole, sendo realizadas apenas diferentes combinações entre os genes. Para remediar

esse problema, são sugeridos alguns métodos de mistura (blending methods) que contam com a

ideia de mutações para adicionar novos materiais genéticos à população.

Assim, seja j um gene (uma variável) para um descendente:

xFilho,j = βxPai,j + (1− β)xMãe,j (2.13)

Onde:

xFilho,j : Valor do gene j do descendente

xPai,j : Valor do gene j do Pai

xMãe,j : Valor do gene j da Mãe

β : Fator de contribuição ∈ [0, 1]

Dessa forma, o gene do filho passa a ser uma combinação linear dos genes de seus ge-

radores. A seleção de quantas e quais variáveis devem ser misturadas é arbitrária e fica a

critério do usuário. Além disso, os valores de β podem ser particulares para cada gene (i.e.

βj, ∀ j = 1, 2, ..., Nvar), mas em geral costuma-se adotar o valor de β = 0, 5 (HAUPT; HAUPT,

2004).

Além da própria mistura dos genes dos pais, o Algoritmo Genético considera a possibili-

dade de mutações na população, um recurso importante para que seja evitado que a população

convirja para mı́nimos locais, sem que consiga sair. Em geral, define-se uma taxa de mutação,

τ , cujo valor costuma ser estabelecido em 20% (HAUPT; HAUPT, 2004). Assim, com essa

taxa, 20% dos genes (Npop ×Nvar) estão sujeitos a mutações. Note que é comum que seja ado-

tada uma prática de “elitismo”, na qual os Nelite melhores cromossomos não são submetidos a

mutações, fazendo com que o número total de genes modificados seja:

NMutações = (Npop −Nelite)×Nvar (2.14)

O processo descrito acima é repetido até que se atinja o critério de parada do algoritmo,

como a taxa de variação entre as gerações, tempo de execução do código, uma solução consi-

derada satisfatória, etc.
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2.3.4 Ant-Colony

O algoritmo de otimização Ant Colony (Ant Colony Optimization - ACO) é uma me-

taheurı́stica populacional inspirada na comunicação entre formigas com o uso de feromônios.

Esse método de busca foi introduzido por Marco Dorigo em 1992 para resolução do traveling

salesman problem (TSP), quando pôde mostrar seu valor na resolução de problemas combi-

natórios (CHENG; MAILUND, 2015).

A ideia por trás do algoritmo é de usar o princı́pio de rastro de feromônios deixados pelas

formigas pelos caminhos percorridos por elas, que na natureza são um indicativo para que outras

formigas possam seguir o mesmo caminho e cheguem até o alimento buscado. Naturalmente, as

formigas optam por caminhos mais curtos (de menor custo) para que possam atingir o objetivo

da colônia, como a busca por alimentos, e quanto mais formigas percorrem o mesmo percurso,

uma quantidade maior de feromônios é deixada no trajeto, levando a uma eventual convergência

na movimentação da colônia (CHENG; MAILUND, 2015).

Figura 11: Representação de um problema de otimização em grafo, onde cada camada
representa os possı́veis valores de uma certa variável.

Fonte: Elaborado pelo autor.

Esse mesmo princı́pio é usado pelo ACO, em que as formigas de cada geração percorrem

um grafo no qual, para cada nı́vel de camada, escolhem um valor para a variável do problema
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representada pela camada, como ilustrado na Figura 11.

Semelhante ao Algoritmo Genético, cada iteração do ACO é formada por uma população

de agentes de tamanho Npop e, ao final de cada iteração, apenas as melhores formigas são

recompensadas.

Inicialmente, todos os caminhos do grafo que representa o problema possuem uma quanti-

dade de feromônio τ0. A escolha de um caminho por uma formiga é probabilı́stica e depende

da quantidade de feromônios existente no percurso. Assim, seja i um nó de origem e j um nó

de destino, então, a probabilidade de que a formiga escolha o nó j como seu próximo destino

entre N possı́veis caminhos é dada por:

pi,j =
ταi,jη

β
i,j∑N

k=1 τ
α
i,kη

β
i,k

(2.15)

Onde:

τi,j : Quantidade de feromônios entre os nós i e j

ηi,j : Visibilidade entre os nós i e j

α : Fator de influência da quantidade de feromônios para a escolha do caminho

β : Fator de influência da visibilidade para a escolha do caminho

Note que a ideia de visibilidade entre nós, representada por η, é um indicativo da “distância”

existente entre os nós, o que pode ser um parâmetro útil para alguns problemas como o TSP.

Ainda, pela equação acima, pode-se perceber que a probabilidade de escolha de um caminho é

dependente da quantidade total de feromônios existentes na mesma camada.

Para uma dada geração, após todas as Npop formigas escolherem seus caminhos, o custo de

cada solução (i.e. cada caminho escolhido por cada formiga) é computado e as formigas são

ranqueadas de acordo com esse custo. Em seguida, a quantidade de feromônios é atualizada e

depende da taxa de evaporação de feromônios, ρ, ou seja, a quantidade de feromônios que deixa

os caminhos a cada iteração; e da quantidade Q adicionada a cada caminho percorrido por cada

formiga. Assim, para dado caminho entre os nós i e j, tem-se que:

τ t+1
i,j ← (1− ρ) · τ ti,j +

Npop∑
k=1

∆τ ki,j (2.16)
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∆τ ki,j =

Q, se a formiga k passou pejo caminho ij

0, caso contrário

Algumas variações do ACO são propostas na literatura e utilizam outros métodos para

atualizar a quantidade de feromônios a cada iteração, como:

• Sistema elitista: Apenas as Nelite melhores formigas encontradas até o momento adicio-

nam feromônios, garantindo que bons caminhos não sejam perdidos;

• Sistema Max-min: A quantidade de feromônios em cada caminho é limitada por um

limite máximo e mı́nimo, o que limita a intensificação de caminhos pelas formigas e

promove maior diversificação na escolha dos percursos;

• Sistema ASRank: Com base no ranqueamento de custos das soluções, as formigas que

apresentam resultados melhores desempenhos adicionam mais feromônios quando com-

parado a formigas com performances piores.

O processo descrito acima é repetido até que se atinja o critério de parada do algoritmo.

2.4 Resolução do SELSP

2.4.1 Revisão da literatura

Ao analisar-se os materiais da literatura já publicados para o Stochastic Economic Lot Sche-

duling Problem, pode-se encontrar o trabalho de Wagner e Smits (2004) em que o controle de

estoques foi analisado diante do cenário do SELSP considerando um sistema de produção com

uma polı́tica de revisão de estoque periódica (R, S), focando na definição de sequenciamentos

ótimos.

A cada vez que o estoque é revisado, uma ordem de produção é emitida para o produto

revisado e a frequência de revisão é dada pelo tempo de ciclo de cada produto. O objetivo da

otimização é determinar um sequenciamento de produção fixo que poderá ser repetido inde-

finidamente e que minimize os custos de setup e estocagem no longo prazo. Mesmo que os

fatores estocásticos tragam incertezas ao sistema e gerem “atrasos” em relação ao que foi pla-

nejado, a sequência estabelecida é mantida e são ajustados os valores dos lotes de produção,

como mostrado na Figura 12.

O método de busca proposto pelos autores é um método de busca local baseado no método

de Simulated Annealing, tendo como palpite inicial uma solução baseada no perı́odo básico de
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produção de cada produto. Assim, os ciclos de produção de cada produto são mantidos como

múltiplos de seus perı́odos básicos. A solução proposta pelo método de busca local tem sua

viabilidade verificada na sequência e o custo da solução é computado.

Mais uma vez, a metodologia de busca adotada é dependente da solução inicial proposta

e a possibilidade de busca de soluções que fujam do padrão estabelecido pela solução inicial

depende da configuração dos hiperparâmetros do algoritmo do Simulated Annealing.

Figura 12: Sequenciamento estático proposto por Wagner e Smits (2004).

Fonte: Wagner e Smits (2004).

Paternina-Arboleda e Das (2005) adotam uma outra estratégia para a resolução do SELSP

por meio de uma abordagem multi-agente de reinforcement learning (RL) para a obtenção de

polı́ticas de controle de estoque dinâmicas.

O modelo proposto pelos autores adota uma abordagem de simulação-otimização para apri-

morar gradativamente a polı́tica de sequenciamento de produtos, no qual cada agente RL repre-

senta um tipo de produto (Figura 13). Caso um produto i esteja sendo produzido, assim que o

sistema atinge seu nı́vel de estoque básico Ri (nı́vel de estoque máximo), o agente RLi pode

tomar duas decisões: trocar a produção para um outro produto j ou manter a máquina (res-

ponsável pela produção) inativa. Caso haja troca do tipo do produto, o processo é repetido,

agora para o produto j. Além disso, esse processo é repetido continuamente até que se obtenha

uma polı́tica de controle de estoques clara.

Note que os agentes RL’s não determinam os valores de nı́vel de estoque básico Rk (∀ k =

1, 2, ..., N ). Porém, os autores ainda aplicam uma busca de segundo nı́vel para encontrar a

combinação mais apropriada dos valores de Rk por meio do uso do software de otimização
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OptQuest em conjunto com o software de simulação ARENA. A busca realizada é local e é

aplicada sobre um espaço de ± 5 unidades.

Figura 13: Esquema do modelo de reinforcement learning de Paternina-Arboleda e Das (2005).

Fonte: Paternina-Arboleda e Das (2005).

Kämpf e Köchel (2006) exploram um problema similar ao SELSP, mas assumem a pos-

sibilidade de atender demandas pendentes. Os autores estudam a performance de polı́ticas de

sequenciamento simples e buscam valores ótimos para os parâmetros de estoque por meio de

um modelo de simulação-otimização.

De forma a simplificar a questão do sequenciamento dos produtos a serem manufaturados,

Kämpf e Köchel (2006) comparam três diferentes polı́ticas: FCFS (First Come First Served),

aleatória (cada item tem chance equiprovável de ser escolhido) e cı́clica (ordem definida a

priori, considerando apenas itens que precisam ser produzidos).

A estratégia adotada pelos autores para a busca de soluções para o problema foi a utilização

de um algoritmo genético. Segundo eles, a escolha pelo algoritmo se deve à flexibilidade de

aplicação do método para diferentes problemas de otimização, à sua robustez em relação à

solução inicial e à necessidade de poucos inputs. Ainda, Kämpf e Köchel (2006) citam a possi-

bilidade de criar “mutações” das soluções buscadas a cada geração do algoritmo, o que permite

ampliar o espaço de busca das soluções do problema e minimizar a exposição a riscos de apri-

sionamento a mı́nimos locais.

Já Löhndorf, Riel e Minner (2014) abordam o mesmo problema de SELSP considerando

tempos de setup dependentes da sequência de produtos e demandas estacionárias, no qual os
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autores se dedicam à otimização da polı́tica de sequenciamento dos ciclos de produção.

Löhndorf, Riel e Minner (2014) comparam três polı́ticas de produção. A primeira delas

é a Common cycle policy (CCP), na qual uma sequência ótima é definida a priori de forma a

minimizar o tempo total de setup considerando o sequenciamento de todos os produtos. Cada

produto é produzido exatamente uma vez a cada ciclo.

A segunda polı́tica analisada é a Fixed-cycle policy (FCP), que calcula primeiramente a

frequência ótima de produção e depois usa essa informação para a construção da sequência

de produção. Essa polı́tica pode ser mais vantajosa para casos em que a demanda dos produ-

tos é desbalanceada, uma vez que em polı́ticas como a CCP, produtos de menor demanda são

produzidos de forma frequente, mesmo sem necessidade.

Por fim, a terceira polı́tica analisada é a Balanced cycle policy (BCP), que busca evitar que

sequenciamentos irregulares e desbalanceados sejam adotados pelo algoritmo de busca caso

tenha uma grande disparidade de custos de setup. Dessa forma, produtos com baixo custo de

setup são produzidos diversas vezes e outros com custo mais caro de setup são produzidos com

menor frequência, levando a nı́veis maiores de estoque. Para essa polı́tica, além da minimização

do tempo de setup total, existe outra otimização em paralelo, na qual a variabilidade inter-setup

é minimizada. Assim, o desvio padrão dos ı́ndices de ocorrência de um mesmo produto em

um mesmo sequenciamento de produção é minimizado, o que permite garantir padrões mais

regulares de sequenciamentos de produção.

O método de busca adotado pelos autores se baseia em uma busca iterativa em duas etapas.

A primeira delas é uma busca global usando o algoritmo de Covariance matrix adaptation evo-

lution strategy (CMA-ES), o qual busca vetores que representem sequenciamentos de produção

de forma a minimizar a esperança do custo médio da solução proposta. O algoritmo é iniciado

com um palpite inicial da melhor solução e uma região de confiança onde se espera encontrar a

melhor solução. Com o output do primeiro algoritmo de busca, um segundo algoritmo é apli-

cado, realizando uma busca local da melhor solução na “vizinhança” da sugestão do CMA-ES.

Nessa segunda etapa, os autores analisam o desempenho de duas heurı́sticas, a Lin–Kernighan

e a 2-opt.

A utilização de um método de busca em duas etapas, com uma busca global e uma busca

local, como proposto por Löhndorf, Riel e Minner (2014), é interessante, pois permite refi-

namentos das soluções de métodos de busca global. Todavia, o desempenho da metodologia

proposta pelos autores ainda é dependente do palpite inicial estabelecido e do hiperparâmetro

ligado à região de confiança da solução, exigindo certo conhecimento prévio da possı́vel solução

ótima.
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Finalmente, cita-se o trabalho de Mesquita e Tomotani (2022), em que o controle de es-

toques foi analisado diante do cenário do SELSP considerando tempos de setup dependentes

do sequenciamento dos produtos. Por meio de uma abordagem de simulação-otimização, os

autores investigaram o problema analisando o impacto de diferentes parâmetros do sistema (ex:

polı́tica de sequenciamento de produtos, número de produtos, flutuação da demanda, custos

etc.) na variável resposta (custo total de estoque) e nas variáveis de decisão, (s, S) - que corres-

pondem ao ponto de reabastecimento de estoques e ao nı́vel de estoque máximo dos produtos

(consideradas iguais para todos os produtos).

Além disso, foram consideradas duas polı́ticas de programação da produção: FIS (First

in Sequence), que define a ordem de verificação dos nı́veis de estoques dos itens, iniciando a

produção para o primeiro que apresentar um nı́vel abaixo do ponto de reabastecimento; e o

LDS (Lowest Days of Supply), que, dentre os itens que estão com nı́veis abaixo do ponto de

reabastecimento, prioriza aquele que tiver menor tempo de cobertura da demanda.

Figura 14: Exemplo de implementação do modelo de simulação no AnyLogic de Mesquita e
Tomotani (2022).

Fonte: Mesquita e Tomotani (2022).
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A metologia adotada por Mesquita e Tomotani (2022) levou à implementação do modelo

de simulação em um software dedicado, o AnyLogic, como visto na Figura 14. Além disso,

a otimização dos parâmetros de estoque (s, S) de forma a minimizar o custo total de estoque

foi feita com o auxı́lio de outro software, o OptQuest, um dos softwares lı́deres do mercado de

soluções de otimização. Além disso, a utilização do método de simulação-otimização permitiu

aos autores a possibilidade de estabelecer um DoE para testar diferentes condições operacionais

(ex: taxa de produção, nı́vel de utilização das máquinas, variabilidade da demanda etc.).

A utilização de softwares como o OptQuest impede que os autores do estudo tenham co-

nhecimento a respeito do método de otimização utilizado e o critério de parada do algoritmo

proposto, limitando possı́veis otimizações para maior adequação da ferramenta ao problema

explorado. Dessa forma, a etapa de otimização torna-se um processo caixa preta (Figura 15),

na qual é possı́vel ter conhecimento apenas dos inputs e dos outputs do modelo de otimização.

Além disso, a utilização de um software com um método genérico de otimização pode mostrar

menor eficiência em relação a uma ferramenta especı́fica desenhada para o problema estudado.

Figura 15: Modelo de Otimização do OptQuest como um processo Black box.

Fonte: Elaborado pelo autor.

2.4.2 Sı́ntese da literatura

Tendo em vista a análise dos estudos levantados na seção 2.4.1 e em linha com as revisões

de literatura sobre o SELSP realizadas por Sox et al. (1999) e Winands, Adan e van Houtum

(2011), pode-se notar que a literatura existente sobre o Stochastic Economic Lot Scheduling

Problem difere-se não apenas na metodologia para resolução do problema, mas também na

abordagem e foco dado ao SELSP.

Os diferentes estudos realizados até o momento tomam duas abordagens distintas: a
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definição de tamanho de lote e o sequenciamento da produção. Em geral, os estudos analisados

adotam simplificações do problema para que possam focar na resolução de um dos pontos men-

cionados acima. A tı́tulo de exemplo, Kämpf e Köchel (2006) restringiram as possibilidades

de sequenciamento de produtos e otimizaram os parâmetros de controle de estoque. Por outro

lado, Paternina-Arboleda e Das (2005) restringiram o espaço amostral dos possı́veis valores

dos parâmetros de estoque e focalizaram na determinação de métodos de sequenciamento dos

produtos.

Nota-se ainda que, para a determinação do sequenciamento de produtos, duas principais

estratégias são adotadas: polı́ticas de sequenciamento cı́clicas ou dinâmicas. Para as polı́ticas

cı́clicas, algoritmos são utilizados para definir uma sequência fixa de produção a ser repetida

continuamente pela fábrica (WAGNER; SMITS, 2004). Já para sequenciamentos dinâmicos, a

decisão passa a ser de definir polı́ticas de priorização dos produtos (PATERNINA-ARBOLEDA;

DAS, 2005).

A definição das polı́ticas de controle do tamanho dos lotes de produção costuma ser mais

simples (e possivelmente mais fácil de aplicar em situações reais) e, em geral, é baseada em

polı́ticas tais como os reabastecimentos (R, Q) ou (s, S), vistos na seção 2.1.3. A complicação

para essa parte do problema está mais ligada à busca de métodos eficientes para a determinação

dos parâmetros de controle de estoque.

Com relação aos métodos de busca observados, pode-se notar que as sugestões dadas pelos

autores analisados também são distintas. Os algoritmos utilizados são variados, podendo tomar

proveito de buscais globais (KÄMPF; KÖCHEL, 2006), locais (WAGNER; SMITS, 2004) ou

uma combinação dos dois (LÖHNDORF; RIEL; MINNER, 2014).

Por fim, com relação à implementação dos modelos de simulação e otimização propos-

tos pelos estudos analisados, notou-se que há certa diversidade, com autores fazendo o uso

de softwares comerciais, tais como AnyLogic e ARENA para simulações e o OptQuest para

otimização.

Dessa forma, no presente Trabalho, a abordagem para o Stochastic Economic Lot Sche-

duling Problem será a definição de tamanho de lotes para uma polı́tica de reabastecimento (s,

S), definindo sequenciamentos por meio de polı́ticas simples de priorização de produtos. Além

disso, o Trabalho seguirá com a abordagem de simulação-otimização, implementando tanto o

modelo de simulação como o de otimização em um software aberto, o Python, conforme deta-

lhado no capı́tulo 3.
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3 MÉTODO

Conforme estabelecido na seção 1.3, este Trabalho de Formatura propõe-se a identificar

e implementar métodos numéricos eficientes para a calibração dos parâmetros de controle de

estoque (si, Si) para o Stochastic Economic Lot Scheduling Problem.

Para tal, adota-se a estratégia de simulação-otimização implementada em Python por meio

da qual são usados dois modelos distintos, um de simulação, que simula uma máquina com

produção em lotes e N estoques, com base nos parâmetros do problema; e outro de otimização,

que aplica métodos numéricos, tais como os apresentados na seção 2.3, para buscar otimizar os

pares (si, Si) e, consequentemente, os custos e nı́vel de serviço.

Devido às caracterı́sticas do problema, que impedem a definição da forma analı́tica da

função objetivo, é possı́vel perceber a importância da ação combinada dos dois modelos, uma

vez que a avaliação das soluções propostas pelo modelo de otimização só pode ser feita com o

uso do modelo de simulação. Assim, o algoritmo de busca é alimentado com a saı́da do modelo

de simulação em cada iteração, até que o critério de parada do modelo simulação-otimização

(definido a priori) seja atingido, conforme apresentado na Figura 16.

Note que essa avaliação das soluções é feita com base no custo total de estoque computado

ao final da simulação para a configuração analisada, sendo o objetivo do otimizador encontrar a

melhor configuração de N pares (si, Si) que minimizem esse custo.

Figura 16: Diagrama do princı́pio de funcionamento do modelo de simulação-otimização.

Fonte: Elaborado pelo autor.
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Além disso, para identificar os métodos de busca implementados mais eficientes, neste

Trabalho, é adotada a metodologia de delineamento de experimentos (DoE). Contudo, para que

os algoritmos possam ter seus desempenhos comparados, é preciso ajustar os parâmetros de

cada método para que eles estejam em suas melhores condições de execução.

Dessa forma, os experimentos realizados são divididos em duas etapas:

(I) Experimentos de calibração;

(II) Experimentos de comparação.

Experimentos de calibração

Primeiramente, realizam-se os experimentos de calibração, nos quais os métodos de busca

são testados em instâncias do problema similares às propostas nos experimentos de comparação.

O objetivo dessa etapa é de verificar qual a melhor configuração dos parâmetros particulares de

cada método de busca para a resolução do problema estudado.

Assim, um plano de experimentos de calibração é desenhado para cada algoritmo, estabe-

lecendo diferentes nı́veis para cada parâmetro com base em referências da literatura, conforme

detalhado no capı́tulo 5.1. Define-se como a melhor configuração de hiperparâmetros aquela

que obtiver o menor custo de estoque total obtido durante os experimentos.

Experimentos de comparação

Em seguida, com os algoritmos calibrados, realizam-se os experimentos de comparação.

Nessa etapa, os métodos de busca implementados e calibrados são testados sob diversas

“condições de operação” estabelecidas por meio de diferentes instâncias do problema que se

distinguem graças a mudanças nos parâmetros gerais, tais como número de produtos, variação

da demanda, demanda média, custos unitários etc.

Sendo assim, por meio de um novo conjunto de experimentos, conforme detalhado no

capı́tulo 6, é possı́vel verificar a robustez das soluções encontradas pelos algoritmos e dos

métodos de busca de solução para condições operacionais mais exigentes e problemas de maior

complexidade, respectivamente.

Nos capı́tulos a seguir, apresentam-se em maior detalhe os modelos de simulação e de

otimização, assim como os experimentos desenhados e seus respectivos resultados.
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4 MODELO DE SIMULAÇÃO

Neste capı́tulo, apresentam-se o modelo conceitual da linha de produção simulada e sua

implementação no modelo de simulação proposto.

4.1 Modelo conceitual

O presente modelo conceitual representa a organização de uma fábrica. O modelo é estru-

turado em dois módulos: de Vendas e de Produção, conforme sugerido por Altiok e Melamed

(2010).

Neste Trabalho, considera-se uma linha de produção capaz de produzir N produtos, produ-

zidos em lotes, com tempos de setup para cada troca de produto na linha.

Todos os produtos manufaturados na linha de produção seguem uma estratégia de Make-to-

Stock (MTS) para atender uma demanda diária variável que consome os produtos do estoque de

produtos acabados da fábrica ao final de cada dia.

Figura 17: Modelo conceitual de vendas e produção para produtos MTS.

Fonte: Adaptado de Mesquita e Tomotani (2022).
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A Figura 17 representa a lógica por trás dos módulos de vendas e produção para a estratégia

MTS adotada.

O recebimento das demandas diárias é realizado pelo Módulo de Vendas, que recebe e

consolida um único pedido por dia para cada produto, verifica se existe estoque suficiente para

os itens solicitados e atende a demanda. Caso o estoque seja insuficiente para atender a demanda

por completo, a demanda é satisfeita de forma parcial e os itens faltantes são considerados como

vendas perdidas (sem backlog). Assim, tem-se que:

Yi,t = min(Xi,t, Ii,t) (4.1)

Onde:

Yi,t : Vendas do produto i no dia t

Xi,t : Demanda do produto i no dia t

Ii,t : Quantidade em estoque para o produto i no dia t

Após a verificação do estoque e do atendimento das demandas do dia, compara-se o es-

toque remanescente dos produtos com seus respectivos pontos de reabastecimento si. Caso a

quantidade em estoque seja maior do que o estoque mı́nimo, nada é feito. Porém, caso contrário

(i.e. Ii,t ≤ si), se o Módulo de Produção estiver ocioso, ele é ativado e uma mensagem é en-

viada a ele contendo informações sobre os itens que devem ser produzidos, adicionando-os em

um backlog de produção. Note que, caso haja necessidade de produzir um item e o Módulo

de Produção já esteja ativo, é verificado se o item a ser produzido já está no backlog (i.e. sua

produção já foi solicitada) e, caso não esteja, o mesmo é adicionado nessa lista.

A decisão do próximo produto a ser produzido e da quantidade a ser produzida é feita

no Módulo de Produção. A priorização para o sequenciamento dos produtos segue uma es-

tratégia LDS (Lowest Days of Supply), ou seja, os itens pendentes (i.e. que estão no backlog de

produção) são ordenados conforme o tempo de cobertura de demanda e o produto com menor

cobertura é priorizado.

Esse processo de verificação da prioridade dos produtos é repetido toda vez que há troca de

um SKU na produção para que sejam atualizados os tempos de cobertura dos itens e o produto

com menor tempo de cobertura no momento do setup seja escolhido.

A quantidade a ser produzida de cada produto é definida por uma polı́tica do tipo order-

up-to, na qual se produz visando a atingir o estoque máximo, Si. Assim, a quantidade a ser

produzida é dada pela diferença entre Si e o estoque atual do produto i no momento em que
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ele é selecionado para iniciar sua produção. Observe que, para um dado produto, caso ocorram

pedidos enquanto o lote é produzido, o nı́vel Si não é atingido.

O módulo de produção mantém-se ativo até que não haja mais itens a serem produzidos,

quando entra em repouso e aguarda novo sinal do módulo de vendas.

A fábrica funciona de forma contı́nua, operando durante 7 dias por semana e 24 horas por

dia e a máquina tem uma taxa de produção média dada por µ, que é igual para todos os produtos.

Porém, considera-se que a taxa de produção efetiva da máquina é influenciada pela sua taxa

de eficácia (OEE - Overall Equipment Effectiveness), representada pelo sı́mbolo ρ. Esse indi-

cador pode ser influenciada por fatores como tempo de setup, manutenção, quebras, qualidade

dos produtos, entre outros.

µEfetiva = µ · ρ (4.2)

Note que, embora variável, a demanda Xi,t para dado produto i no dia t é estacionária, ou

seja, pode-se representar sua distribuição a partir de uma distribuição log-normal com média µi

e desvio padrão σi, que são dependentes dos parâmetros di (demanda média do produto) e de

um coeficiente de variação, cv, comum a todos os produtos:

Xi,t ∼ Lognormal(µlog−normal
i , (σlog−normal

i )
2
) (4.3)

µlog−normal
i = ln

(
di√

1 + cv2

)
(4.4)

σlog−normal
i =

√
ln(1 + cv2) (4.5)

∀i ∈ i = 1, 2, ..., N

O tempo de processamento de um lote de produção na máquina segue uma distribuição

log-normal, com os parâmetros da distribuição calculados de forma similar ao da distribuição

das demandas dos produtos:

tprod ∼ Lognormal(µlog−normal
prod (µ, cv), (σlog−normal

prod (µ, cv))
2
) (4.6)

Para iniciar a produção, considera-se que seja necessário realizar um setup na máquina com

valor médio de tsetup0 . Assim como para o tempo de produção dos lotes, o tempo de setup segue

uma distribuição log-normal:

tsetup ∼ Lognormal(µlog−normal
setup (tsetup0 , cv), (σlog−normal

setup (tsetup0 , cv))
2
) (4.7)
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Por fim, ressalta-se que o desempenho do controle de estoque é medido pelo seu nı́vel de

serviço e pelo seu custo de estoque total anual, que considera custos de manutenção de estoque,

custos de setup e custo de ruptura de estoque, os quais podem ser computados da seguinte

forma:

THC =
T sim∑
t=1

(
N∑
i=1

Ei,t · hc

)
· T

ano

T sim
(4.8)

TLC =
T sim∑
t=1

(
N∑
i=1

(Di,t −Di,t) · lc

)
· T

ano

T sim
(4.9)

TSC = Nsetup · sc ·
T ano

T sim
(4.10)

TIC = THC + TSC + TLC (4.11)

SL =
Tvendas

Tdemanda

(4.12)

Onde:

T sim : Total de dias simulados

T ano : Total de dias de operação da empresa no ano

THC : Custo de manutenção de estoque anual (Total Holding Cost)

TLC : Custo de ruptura de estoque anual (Total Lost Sales Cost)

TSC : Custo de setup anual (Total Setup Cost)

Nsetup : Número total de setups realizados no ano

TIC : Custo total de estoque anual (Total Inventory Cost)

Xtotal : Demanda total anual

Ytotal : Número total de vendas anual

SL : Nı́vel de serviço (Service Level)

Na Tabela 1, apresentam-se os valores para os parâmetros fixos do problema. Já na Tabela

2, reúnem-se a notação e a descrição das principais variáveis do problema.
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Tabela 1: Parâmetros fixos do problema.

Variável Descrição Valor Unidade

T ano Total de dias de operação da empresa no ano 250 Dias

tsetup0 Tempo de setup base médio 1 Horas

hc Custo diário unitário de manutenção do estoque 0, 1 R$/dia/unid.

lc Custo unitário de ruptura de estoque 40 R$/unid.

sc Custo fixo de setup 250 R$/setup

Tabela 2: Variáveis e parâmetros do problema.

Variável Descrição Unidade

N Número de itens produzidos -

T sim Total de dias simulados Dias

Xtotal Demanda total anual Unid.

Ytotal Número total de unidades vendidas no ano Unid.

di Demanda média diário do produto i Unid./dia

cv Coeficiente de variação -

ρ Taxa de eficácia da máquina -

µ Taxa de produção da máquina Unid./dia

si Estoque mı́nimo/Ponto de reabastecimento para o item i Unid.

Si Estoque máximo o item i Unid.

THC Custo de manutenção de estoque anual R$

TLC Custo de ruptura de estoque anual R$

TSC Custo de setup anual R$

TIC Custo total de estoque anual R$

SL Nı́vel de serviço -

4.2 Modelo computacional

O modelo computacional foi implementado em dois blocos, o de vendas e de produção,

conforme os respectivos módulos apresentados anteriormente na seção 4.1. Esses módulos

foram implementados por meio de um modelo de simulação de eventos discretos com o uso da

biblioteca Simpy do Python.

No Algoritmo 2 apresenta-se o pseudocódigo para o módulo de vendas de cada produto,

que recebe os pedidos diariamente e verifica se é possı́vel atender a demanda com completude,

bem como se é necessário iniciar a produção de algum item.
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De forma similar, no Algoritmo 3 apresenta-se o pseudocódigo para o módulo de produção

implementado que verifica no log quais os produtos a serem fabricados, seleciona o SKU mais

prioritário e simula o tempo de setup e de manufatura para o item.

Ao final da simulação, os resultados são apresentados ao usuário por meio de um gráfico de

monitoramento do nı́vel de estoque para os itens. Além disso, são exibidos os indicadores de

desempenho computados durante a simulação, tais como os custos (TIC, THC, TLC e TSC) e o

nı́vel de serviço (SL), como mostrado na Figura 18. O exemplo da Figura 18 representa o caso

particular em que (si, Si) = (s, S) ∀ i = 0, 2, ..., 9.

Algoritmo 2 Módulo de vendas

1: função MÓDULO DE VENDAS(env, id) ▷ Onde env é ambiente de simulação e id é o

identificador do produto

2: Enquanto VERDADEIRO faça

3: Did,t ← DEMANDA(id) ▷ Computa a demanda estacionária diária

4: Qvendas ← min(Eid, Did,t) ▷ Computa a quantidade vendida

5: Eid ← ATUALIZAR(Qvendas) ▷ Atualiza o estoque

6: Se Eid ≤ sid Então ▷ Verifica se atingiu ponto de reabastecimento

7: Se id não está em Logprodução Então ▷ Verifica se produção já foi solicitada

8: Logprodução ← ADICIONAR(id)

9: Fim Se

10: Fim Se

11: Tvendas ← Tvendas +Qvendas ▷ Atualiza o total de vendas

12: Tdemanda ← Tdemanda +Did,t ▷ Atualiza o total de demanda

13: TLC ← Tlc + (Did,t −Qvendas) · lc ▷ Atualiza o custo total de vendas perdidas

14: Yield SIMULAR(24 horas) ▷ Executa todos os eventos das próximas 24 horas

antes de reiniciar o loop

15: Fim Enquanto

16: Fim função
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Algoritmo 3 Módulo de produção

1: função MÓDULO DE PRODUÇÃO(env, Logprodução) ▷ Onde env é ambiente de simulação e

Logprodução é a lista de itens a produzir

2: Enquanto VERDADEIRO faça

3: Yield ATIVAÇÃO() ▷ Aguarda ativação do módulo de produção

4: id← PRIORIZAR(Logprodução) ▷ Seleciona o item a produzir

5: Qprod ← Sid − Eid

6: Yield SETUP MÁQUINA(env, id) ▷ Simula o tempo de setup

7: Yield PRODUZIR(env, id,Qprod) ▷ Simula o tempo de produção do item

8: Se TAMANHO(Logprodução) igual a 0 Então ▷ Verifica se há mais itens a produzir

9: env ← REPOUSO PRODUÇÃO(env)

10: Fim Se

11: Fim Enquanto

12: Fim função

Figura 18: Exemplo de simulação para N = 10.

Fonte: Elaborado pelo autor.

4.3 Verificação e Validação

Com o modelo computacional implementado, é preciso fazer a verificação do modelo para

atestar sua coerência e aderência ao problema a ser resolvido e, para tal, pode-se simular o

funcionamento da fábrica com parâmetros determinı́sticos em um ambiente com baixa comple-

xidade.

Para verificar a coerência dos resultados do modelo, foram realizados os seguintes testes:

1. Teste 1: Um produto com demanda nula;
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2. Teste 2: Um produto com demanda unitária determinı́stica e taxa de produção muito

maior do que a demanda diária;

3. Teste 3: Um produto com demanda determinı́stica e taxa de produção igual à demanda

diária;

4. Teste 4: Um produto com demanda determinı́stica e ponto de reabastecimento nulo;

5. Teste 5: Dois produtos com demandas determinı́sticas distintas;

6. Teste 6: Dois produtos com demandas determinı́sticas iguais e pontos de reabastecimento

distintos;

7. Teste 7: Três produtos com demandas determinı́sticas iguais e pontos de reabastecimento

iguais.

Figura 19: Testes 1 a 6 de verificação e validação do modelo de simulação.

(a) Teste 1. (b) Teste 2.

(c) Teste 3. (d) Teste 4.

(e) Teste 5. (f) Teste 6.

A seguir, apresenta-se em mais detalhe o último teste listado (Teste 7), que ilustra a validade

do modelo no auxı́lio à resolução do problema explorado neste Trabalho.
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Tabela 3: Parâmetros comuns aos cenários de exemplo do Teste 7.

Variável Valor Unidade

N 3 -

T sim 50 Dias

di 10 Unid./dia

cv 0 -

ρ 100% -

µ 30 Unid./dia

Smax 150 Unid.

Assim, para uma fábrica que produz 3 tipos de itens, define-se uma demanda diária co-

mum a todos de 10 unid./dia/produto, conforme mostrado na Tabela 3, e parâmetros de estoque

também comuns tais que (si, Si) = (smin, Smax),∀ i = 0, 1, 2.

Ao definir-se dois cenários, A e B, tais que os respectivos pontos de reabastecimento são

sAmin = 100 e sBmin = 50, e assumindo que os estoques iniciais são iguais a Smax, é possı́vel

simular a performance do sistema e obter os resultados apresentados na Tabela 4 e nas Figuras

20 e 21.

Tabela 4: Comparação dos cenários A e B (N = 3) para o Teste 7.

Cenário A Cenário B

smin 100 50

THC R$ 6.420 R$ 4.900

TLC R$ 0 R$ 38.000

TSC R$ 18.750 R$ 10.000

TIC R$ 25.170 R$ 52.900

SL 100% 87,33%

Ao analisar os resultados obtidos, percebe-se que eles são coerentes com o comportamento

esperado. O cenário A obteve um custo de manutenção de estoque maior do que o cenário B, já

que seu ponto de reabastecimento mais conservador leva a um nı́vel de estoque médio maior.

Essa abordagem mais conservadora também foi importante para o nı́vel de serviço apresen-

tado pelos cenários, que foi de 100% para o cenário A (com TLCA = R$ 0) e 87,33% para o

cenário B, que apresentou um custo de ruptura de estoque bem maior (TLCB = R$ 38.000).

Com uma menor diferença entre os valores de Smax e smin, mais setups são exigidos para o

cenário A quando comparado ao cenário B, o que foi verificado pelo custo de setup computado
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para as respectivas instâncias (TLCA = R$ 18.750 e TLCB = R$ 10.000).

Por fim, embora para certos empreendimentos o nı́vel de serviço apresentado pelo cenário

B seja satisfatório, observa-se que o trade-off entre o tamanho dos lotes e a performance da

fábrica do cenário B não é atrativo, pois seu custo total final é maior do que para o cenário A

(TLCA = R$ 25.170 < TLCB = R$ 52.900).

Portanto, por meio do exemplo apresentado, pode-se validar a utilidade do modelo na

comparação de diferentes configurações de sistemas produtivos, o que auxiliará na identificação

das melhores configurações de parâmetros de controle de estoque para uma fábrica, que é um

dos objetivos deste Trabalho de Formatura.

Figura 20: Resultado obtido para o Cenário A.

Fonte: Elaborado pelo autor.

Figura 21: Resultado obtido para o Cenário B.

Fonte: Elaborado pelo autor.
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5 MODELO DE SIMULAÇÃO-OTIMIZAÇÃO

Com o modelo de simulação verificado e validado, segue-se com a implementação dos

métodos de busca em duas etapas: a implementação da estrutura global do método e a calibração

dos hiperparâmetros dos algoritmos.

5.1 Experimentos de calibração

Na primeira fase da implementação dos métodos de busca, o foco principal estava na criação

da estrutura fundamental dos métodos, incluindo a definição das principais funções conforme o

modo de funcionamento dos métodos, como apresentado na seção 2.3.

Após a implementação inicial do método de busca, passou-se para a segunda etapa: a de

calibração. Nessa fase, o objetivo era ajustar os valores dos hiperparâmetros de cada algoritmo

para otimizar seus desempenhos em termos de eficiência e precisão.

A calibração é uma etapa crı́tica, pois é por meio dela que serão buscados os potenciais

máximos de performance dos métodos de busca para o problema estudado. É importante ressal-

tar que a calibração de algoritmos não é uma tarefa trivial e pode ser tratada como um problema

à parte por si só, devido à complexidade do processo e ao tempo que pode tomar (HAMADI;

MONFROY; SAUBION, 2012).

A necessidade de adaptar os valores dos parâmetros às particularidades do problema e às

restrições de execução dos experimentos impede a simples utilização de parâmetros indicados

na literatura. Todavia, os valores da literatura ainda se mostram úteis para indicar ordens de

grandeza e intervalos, como em Jin et al. (2019) para o algoritmo Nelder-Mead; ou relações de

dependência entre os parâmetros, como indicado em Wong e Komarudin (2008) e Angelova e

Pencheva (2011) para os algoritmos Ant Colony e Genetic Algorithm, respectivamente.

Além disso, é preciso aliar a intuição e o conhecimento prévio do problema para equilibrar

as estratégias de “intensificação” e “diversificação” durante a busca por soluções.

A intensificação diz respeito à exploração com foco em regiões do espaço de busca que

já foram observados. Assim, essa é uma estratégia que visa a aperfeiçoar as soluções atuais,

buscando outros candidatos próximos àqueles que já foram identificadas como promissores.
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Isso significa que o algoritmo prioriza a exploração de áreas onde as melhores soluções foram

encontradas anteriormente.

A diversificação, por outro lado, visa a explorar áreas do espaço de busca que ainda não

foram bem exploradas, mesmo que isso signifique sair das regiões onde boas soluções já foram

encontradas. É uma estratégia que ajuda a evitar a convergência prematura e a garantir que o

algoritmo continue procurando por soluções potencialmente melhores em diferentes partes do

espaço de busca.

As principais técnicas de otimização de métodos de busca metaheurı́sticos encontradas na

literatura podem ser classificadas em otimizações online e offline. As técnicas online são mais

complexas e buscam adaptar os valores dos hiperparâmetros durante a execução do algoritmo

para resolução de instâncias do problema. Já as técnicas offline são mais simples e buscam a

configuração apropriada dos algoritmos antes da execução dos algoritmos e, tradicionalmente,

esses métodos de otimização dos hiperparâmetros ocorrem via tentativa e erro (HAMADI;

MONFROY; SAUBION, 2012).

Para este Trabalho, optou-se pela adoção da calibração offline por meio de um experimento

fatorial completo para cada um dos três métodos de busca que possuem hiperparâmetros. Para

cada algoritmo, buscou-se na literatura intervalos de valores esperados para os parâmetros e, a

partir deles, definiram-se diferentes nı́veis para cada hiperparâmetro. Devido à diferença entre

o número de parâmetros a serem calibrados em cada método de busca, buscou-se equilibrar o

número de experimentos realizados para cada algoritmo, conforme ilustrado na Tabela 5.

Tabela 5: Tabela dos experimentos fatoriais de calibração.

Algoritmo Parâmetros Tipo de experimento Combinações Minutos

Nelder-Mead 4 4k 256 2048

Genetic Algorithm 5 3k 243 1944

Ant-Colony 8 2k 256 2048

Note que o teste das configurações/combinações de parâmetros foi feito com base em 8

instâncias do problema estudado, para que se pudesse testar a performance dos parâmetros

em diferentes circunstâncias. Assim, para cada conjunto de hiperparâmetros, os algoritmos

buscaram soluções para os cenários apresentados na Tabela 6:
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Tabela 6: Tabela dos cenários a serem testados por cada configuração de hiperparâmetros dos
métodos de busca.

Cenário N p cv ρ Tempo de execução

1 5 0 0,1 80% 60 s

2 5 0 0,5 80% 60 s

3 5 0,15 0,1 80% 60 s

4 5 0,15 0,5 80% 60 s

5 20 0 0,1 80% 60 s

6 20 0 0,5 80% 60 s

7 20 0,15 0,1 80% 60 s

8 20 0,15 0,5 80% 60 s

Na Tabela 6, N é o número de produtos, p é um fator de distribuição de demanda, cv é o

coeficiente de variação e ρ é a taxa de eficácia da máquina, conforme descrito com mais detalhes

no capı́tulo 6.

A cada algoritmo teve 60 segundos para buscar o melhor custo possı́vel para cada cenário.

Dessa forma, cada algoritmo foi calibrado durante aproximadamente 2.000 minutos ou 33 horas.

Ao final, para avaliar o desempenho da configuração de parâmetros, foram comparadas a

soma dos custos obtidos nos 8 cenários, sendo considerada como a melhor configuração aquela

com menor custo total.

A seguir, apresentam-se em mais detalhes os diferentes métodos de busca implementados

para a resolução do problema estudado, assim como a calibração executada para cada um deles.

5.2 Busca aleatória

O método de busca aleatória é uma abordagem que se baseia na aleatoriedade para explorar

e buscar soluções em um dado espaço de busca. Nesse método, o processo de busca não segue

uma ordem determinı́stica, mas sim uma estratégia guiada pelo acaso.

Ao utilizar o método de busca aleatória, o algoritmo seleciona uma solução candi-

data de forma aleatória dentro do espaço de busca e avalia seu desempenho. Em seguida,

na próxima iteração, uma nova solução candidata é sorteada e avaliada, sem qualquer in-

fluência/dependência do resultado obtido na iteração anterior.

Se a nova solução candidata obtida for considerada melhor do que a solução anterior, ela é
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aceita e se torna a nova solução atual. Caso contrário, a solução atual permanece inalterada.

Uma das principais vantagens do método de busca aleatória é a sua capacidade de evitar

a estagnação em ótimos locais, pois a aleatoriedade na escolha das soluções permite que se-

jam exploradas áreas diferentes do espaço de busca, aumentando a probabilidade de encontrar

soluções melhores. Além disso, de forma prática, o método é simples de ser implementado.

No entanto, é importante ressaltar que o método de busca aleatória não trabalha com a

noção de convergência para soluções ótimas, o que resulta em uma exploração incompleta de

subespaços com melhor potencial. Devido a esse fato, o método torna-se sensı́vel à dimensio-

nalidade do problema, pois grandes problemas possuem espaços de busca mais complexos.

Na Figura 22, pode-se observar o comportamento do algoritmo descrito acima. Para um

problema com 5 produtos, o algoritmo foi capaz de encontrar soluções melhores com o avanço

das iterações. Porém, pela Figura 22, fica evidente que não há uma convergência nas soluções

candidatas analisadas uma vez que há grande variação entre os custos computados.

Figura 22: Custo dos candidatos analisados em cada iteração da Busca aleatória (Random
Search).

Fonte: Elaborado pelo autor.

Em resumo, o método de busca aleatória é uma abordagem interessante para explorar

espaços de busca em problemas em que a estrutura do espaço não é conhecida ou não pode

ser facilmente explorada. Sua capacidade de evitar ótimos locais e sua simplicidade de

implementação são caracterı́sticas atrativas. No entanto, é necessário avaliar cuidadosamente a

adequação desse método em relação às caracterı́sticas do problema em questão.

No Algoritmo 4, representa-se o pseudocódigo usado para implementação da busca

aleatória.
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Algoritmo 4 Busca aleatória

1: função BUSCA ALEATÓRIA

2: sbest ← None ▷ Melhor solução

3: fbest ←∞ ▷ Custo da melhor solução

4: continuar ← V ERDADEIRO

5: Enquanto continuar faça

6: s← SORTEAR() ▷ Gera um candidato aleatório

7: fs ← AVALIAR(s) ▷ Calcula o custo para o candidato s

8: Se fs < fbest Então

9: fbest ← fs

10: sbest ← s

11: Fim Se

12: Se Critério de parada atendido Então

13: continuar ← FALSO

14: Fim Se

15: Fim Enquanto

16: Retorne sbest, fbest

17: Fim função

5.3 Nelder-Mead

Como visto na seção 2.3, o algoritmo de busca Nelder-Mead é um método de busca com

grande potencial para auxiliar na resolução do problema estudado neste Trabalho de Formatura.

Esse método analisa múltiplos pontos durante uma mesma iteração e busca a convergência para

os candidatos com maior potencial (i.e. menor custo).

Sendo assim, seguiu-se com a implementação desse método de busca, adaptando-o para o

contexto deste estudo. No Algoritmo 5, descreve-se o pseudocódigo para o código implemen-

tado:
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Algoritmo 5 Nelder-Mead
1: função NELDER-MEAD

2: α← α(constante) ▷ Fator de Reflexão

3: β ← β(constante) ▷ Fator de Expansão

4: γ ← γ(constante) ▷ Fator de Contração

5: ρ← ρ(constante) ▷ Fator de Encolhimento

6: Continuar ← TRUE ▷ Critério de parada

7: S0← SIMPLEXINICIAL() ▷ Onde S0 é o Simplex inicial com N + 1 vértices

criado aleatoriamente

8: S ← S0 ▷ Simplex atual

9: Enquanto Continuar faça

10: Lcost ← ORDENAR(S) ▷ Calcula os custos de cada ponto de S e ordena em ordem

crescente em uma lista

11: fl, Pl ← Lcost[0], P (Lcost[0]) ▷ Determina o ponto de melhor custo

12: fh, Ph ← Lcost[−1], P (Lcost[−1]) ▷ Determina o ponto de pior custo

13: fs, Ps ← Lcost[−2], P (Lcost[−2]) ▷ Determina o ponto de segundo pior custo

14: Pc ← CENTROIDE(S)

15: Pr ← RESTRINGIR(REFLETIR(Pc, Ph, α))

16: Se fl ≤ f(Pr) E f(Pr) < fs Então ▷ Caso #1

17: S ← NOVO SIMPLEX(S, Ph, Pr)

18: Senão Se f(Pr) < fl Então ▷ Caso #2

19: Pe ← RESTRINGIR(EXPANDIR(Pc, Pr, β))

20: Se f(Pe) < f(Pr) Então ▷ Caso #2.1

21: S ← NOVO SIMPLEX(S, Ph, Pe)

22: Senão ▷ Caso #2.2

23: S ← NOVO SIMPLEX(S, Ph, Pr)

24: Fim Se

25: Senão Se f(Pr) ≥ fs Então ▷ Caso #3

26: PCont,1, PCont,2← RESTRINGIR(CONTRAIR(Pc, Ph, Pr, γ))

27: PCont,final ←MENOR CUSTO(PCont,1, PCont,2)

28: Se f(PCont,final) < fh Então ▷ Caso #3.1

29: S ← NOVO SIMPLEX(S, Ph, PCont,final)

30: Senão ▷ Caso #3.2

31: S ← ENCOLHER(S, Pl)

32: Fim Se
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33: Senão ▷ Caso #4

34: S ← RESTRINGIR(ENCOLHER(S, Pl))

35: Fim Se

36: Se PARAR(S) Então: ▷ Verifica se critérios de parada são respeitados

37: Continuar ← FALSE

38: Fim Se

39: Fim Enquanto

40: Lcost ← ORDENAR(S)

41: fbest, Pbest ← Lcost[0], P (Lcost[0])

42: Imprima fbest, Pbest

43: Fim função

O código implementado segue a estrutura indicada na literatura. Porém, para garantir que os

novos candidatos gerados nos processos de reflexão, expansão, encolhimento e contração sejam

candidatos viáveis, uma adaptação foi feita ao código adicionando a função RESTRINGIR, que

garante que, para cada candidato, todos os pares (si, Si) sigam os seguintes critérios:

si, Si ≥ 0 ∀i = 1, 2, ..., N

si ≤ Si ∀i = 1, 2, ..., N

Assim, adotou-se como premissa que caso si ou Si fossem negativos, seus valores seriam

substituı́dos por 0 e caso si > Si, o valor de si seria substituı́do de forma que si = Si.

De forma a obter melhores desempenhos com o algoritmo, é essencial ajustar seus hiper-

parâmetros para se adequarem ao problema especı́fico em estudo. Neste Trabalho, aborda-se

o processo de calibração dos parâmetros do Nelder-Mead focando na adaptação dos 4 fatores

α, β, γ e ρ, que dizem respeito aos fatores de reflexão, expansão, contração e encolhimento.

A calibração dos hiperparâmetros foi realizada por meio de experimento fatorial 4k com-

pleto, conforme explicado anteriormente. Para cada parâmetro, foram estabelecidos diferentes

nı́veis, tendo como referência os valores apresentados na literatura por Jin et al. (2019). Um

resumo dos valores testados no experimento de calibração é apresentado na Tabela 7.
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Tabela 7: Plano de Experimento fatorial 4k de calibração do Algoritmo de Nelder-Mead.

Parâmetro Descrição Nı́vel 1 Nı́vel 2 Nı́vel 3 Nı́vel 4

α Fator de Reflexão 0,5 1 1,5 2

β Fator de Expansão 0,5 1 1,5 2

γ Fator de Contração 0,5 1 1,5 2

ρ Fator de Encolhimento 0,5 1 1,5 2

Com base no experimento fatorial definido, 256 configurações de parâmetros foram testa-

das, conforme apresentado na Tabela 8:

Tabela 8: Resultado dos Experimentos de calibração para o Nelder-Mead.

Rank α β γ ρ Custo

1 1,0 0,5 0,5 1,5 896.373,7

2 1,0 2,0 0,5 0,5 899.543,8

3 1,5 2,0 0,5 1,0 903.970,1

4 2,0 0,5 0,5 1,5 908.802,7

5 1,5 2,0 2,0 0,5 913.935,5

...

252 2,0 0,5 1,5 2,0 1.424.901,6

253 2,0 0,5 2,0 1,5 1.454.313,3

254 2,0 2,0 1,0 2,0 1.455.548,4

255 1,5 0,5 1,5 1,5 1.458.122,7

256 1,5 1,0 1,0 1,5 1.465.053,6

Dessa forma, os melhores valores para os hiperparâmetros obtidos após a calibração são

apresentados na Tabela 9:

Tabela 9: Parâmetros calibrados do Algoritmo de Nelder-Mead.

Parâmetro Descrição Valor

α Fator de Reflexão 1,0

β Fator de Expansão 0,5

γ Fator de Contração 0,5

ρ Fator de Encolhimento 1,5

Finalmente, na Figura 23 é possı́vel ver um exemplo de resultado obtido com este método
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de busca para o mesmo caso de 5 produtos testado na busca aleatória. É possı́vel notar que a

média do custo dos candidatos analisados tende a convergir para valores próximos ao da melhor

solução encontrada, o que não era observado com o método de busca aleatória. Assim, percebe-

se que, no algoritmo de Nelder-Mead, prioriza-se a intensificação em relação a diversificação.

Figura 23: Custo médio do Simplex em cada iteração do Nelder-Mead.

Fonte: Elaborado pelo autor.

5.4 Genetic Algorithm

O terceiro método de busca implementado foi o Genetic Algorithm (Algoritmo Genético),

uma abordagem do tipo populacional que examina múltiplas soluções em cada geração

(iteração) e procura convergir para os indivı́duos com maior aptidão (ou seja, menor custo),

inspirando-se nos mecanismos de seleção natural e troca genética. No Algoritmo 6, descreve-se

o pseudocódigo para o código implementado.

Da mesma forma que o Algoritmo Nelder-Mead, o Algoritmo Genético foi calibrado de

forma a obter melhor performance no problema tratado neste Trabalho.

Para adaptar o Algoritmo Genético ao problema em questão, foram ajustados 5 parâmetros:

o tamanho da população (Npop); o número de indivı́duos sobreviventes (Nkeep) ou a taxa de

sobrevivência (Pkeep); o número de pontos de cruzamento (Ncrossover) ou a taxa de crosso-

ver (Pcrossover); a taxa de mutação (τ ) e a taxa de contribuição dos pais (β) na prole. Esses

parâmetros desempenham um papel crucial no equilı́brio entre diversidade de exploração da

busca, bem como na convergência do algoritmo.

Novamente, o processo de calibração dos parâmetros ocorreu por meio de um experimento

fatorial completo. Dessa vez, um experimento fatorial 3k foi realizado e os possı́veis nı́veis para

cada um dos hiperparâmetros foram definidos com base nos valores apresentados por Angelova
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e Pencheva (2011). O plano dos experimentos de calibração é apresentado na Tabela 10.

Tabela 10: Plano do Experimento fatorial 3k de calibração do Algoritmo Genético.

Parâmetro Descrição Nı́vel 1 Nı́vel 2 Nı́vel 3

Npop População total 10 15 20

Pkeep Taxa de sobrevivência 30% 50% 70%

Pcrossover Taxa de crossover 50% 70% 100%

τ Taxa de mutação 1% 5% 10%

β Taxa de contribuição dos pais 50% 70% 100%

Em seguida, os resultados das 243 configurações de parâmetros testadas são apresentados

na Tabela 11.

Tabela 11: Resultados dos Experimentos de calibração para o Algoritmo Genético.

Rank Npop τ Pkeep β Pcrossover Custo

1 20 0,01 0,7 0,5 1,0 1.053.974,2

2 10 0,10 0,5 0,7 0,7 1.055.028,9

3 10 0,05 0,5 0,5 0,7 1.055.926,4

4 15 0,01 0,5 0,7 1,0 1.059.304,3

5 15 0,05 0,7 0,5 0,7 1.076.928,7

...

239 10 0,01 0,5 1,0 0,5 1.322.820,2

240 10 0,05 0,3 1,0 0,5 1.336.739,9

241 10 0,05 0,3 1,0 0,7 1.346.779,8

242 15 0,10 0,3 1,0 1,0 1.354.014,7

243 10 0,01 0,3 1,0 0,7 1.362.867,0

Os valores para os hiperparâmetros calibrados do Algoritmo Genético podem ser encontra-

dos na Tabela 12, em que N é o número de variáveis do problema.



74

Tabela 12: Parâmetros calibrados do Algoritmo Genético.

Parâmetro Descrição Valor

Npop População total 20

Nkeep População sobrevivente 14

Ncrossover Pontos de cruzamento N

τ Taxa de mutação 1%

β Taxa de contribuição dos pais 50%

Algoritmo 6 Algoritmo Genético

1: função ALGORITMO GENÉTICO(Nvar) ▷ Onde Nvar é o número de variáveis do problema

2: Npop ← Npop(constante) ▷ Tamanho da população

3: Nkeep ← Nkeep(constante) ▷ # Indivı́duos que sobrevivem por geração

4: β ← β(constante) ▷ Fator de contribuição

5: τ ← τ(constante) ▷ Taxa de mutação

6: Ncrossover ← Ncrossover(constante) ▷ Pontos de cruzamento

7: S0 ← POPULAÇÃO INICIAL(Npop, Nvar) ▷ Cria a população inicial

8: Continuar ← TRUE ▷ Critério de parada

9: S ← S0

10: Enquanto Continuar faça

11: Lcost ← ORDENAR(S)

12: SSobreviventes ← SELEÇÃO NATURAL(Nkeep, Lcost, S)

13: SDescendentes ← ACASALAMENTO(Npop, Nkeep, SSobreviventes, β)

14: S ← SSobreviventes + SDescendentes

15: S ←MUTAÇÃO(S, τ )

16: Se PARAR(S) Então ▷ Verifica se critérios de parada são respeitados

17: Continuar ← FALSE

18: Fim Se

19: Fim Enquanto

20: Lcost ← ORDENAR(S)

21: fbest, Cromossomobest ← Lcost[0], S[Lcost[0]]

22: Imprima fbest, Cromossomobest

23: Fim função
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Figura 24: Custo médio da população em cada iteração do Algoritmo Genético.

Fonte: Elaborado pelo autor.

Finalmente, na Figura 24 é possı́vel ver o resultado obtido com este método de busca para o

exemplo de 5 produtos testado com os outros métodos de busca. É possı́vel notar que a média do

custo da população, neste exemplo, apresentou oscilação e uma queda lenta em seu valor, mas

a melhor solução encontrada pelo algoritmo apresentou evolução com o avanço das iterações.

5.5 Ant Colony

O quarto e último algoritmo de busca implementado foi o Ant Colony. Assim como o

Genetic Algorithm, esse método adota uma abordagem populacional, usando populações de

formigas para analisar múltiplos caminhos (soluções candidatas) durante uma iteração, e busca

a convergência para as soluções com maior potencial (ou menor custo).

Assim, prosseguiu-se com a implementação deste método de busca, adaptando-o para se

adequar ao contexto deste estudo conforme apresentado no Algoritmo 7, que descreve o pseu-

docódigo para o Ant Colony Optimization implementado.

Assim como nos outros algoritmos, uma calibração dos hiperparâmetros foi realizada.

Porém, além do parâmetros próprios do algoritmo, foram testados diferentes valores para a den-

sidade da malha para discretização do problema. Como explicado anteriormente, o algoritmo

Ant Colony utiliza a estrutura de um grafo durante a otimização. Assim, para problemas como

o estudado, no qual o espaço de soluções é contı́nuo, é preciso estabelecer uma discretização do

espaço.

Malhas mais densas permitem uma exploração mais detalhada do espaço de soluções,

porém, com o aumento da complexidade do problema (i.e. número de variáveis e tamanho
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do intervalo de possı́veis valores), a densidade do grafo que representa o problema aumenta

exponencialmente, o que prejudica a performance do algoritmo. Assim, para este problema,

adotou-se como densidade da malha o valor de 5 unidades, logo, para dado intervalo de valores

discretizado, dois possı́veis valores para a solução estarão separados por 5 unidades.

Algoritmo 7 Ant Colony Optimization
1: função ACO(G) ▷ Onde G é o grafo do problema

2: Npop ← Npop(constante) ▷ Tamanho da população

3: α← α(constante) ▷ Influência do feromônio na escolha

4: β ← β(constante) ▷ Influência da visibilidade na escolha

5: ρ← ρ(constante) ▷ Taxa de evaporação

6: Q← Q(constante) ▷ Quantidade de feromônios adicionada por formiga

7: τ0 ← τ0(constante) ▷ Quantidade inicial de feromônios

8: τmin, τmax ← τmin, τmax(constantes) ▷ Quantidades mı́nima e máxima de feromônios

9: Nupdate ← Nupdate(constante) ▷ N melhores formigas a adicionarem feromônios

10: fbest ←∞
11: Caminhobest ← None

12: Continuar ← TRUE ▷ Critério de parada

13: Enquanto Continuar faça

14: Lcaminhos ← list()

15: Para Formiga em Npop faça

16: Caminhoformiga ← ESCOLHER CAMINHO(G,α, β)

17: Lcaminhos ← ARMAZENAR(Caminhoformiga)

18: Fim Para

19: Lcost ← ORDENAR(Lcaminhos)

20: Se Lcost[0] < fbest Então ▷ Atualiza o melhor caminho

21: fbest = Lcost[0]

22: Caminhobest ← Lcaminhos[Lcost[0]]

23: Fim Se

24: G← ATUALIZAR FEROMÔNIOS(G,Lcaminhos, ρ, Q,Nupdate, τmin, τmax)

25: Se PARAR(Caminhobest, fbest) Então ▷ Verifica critérios de parada

26: Continuar ← FALSE

27: Fim Se

28: Fim Enquanto

29: Imprima fbest, Caminhobest

30: Fim função
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Assim como realizado com os outros algoritmos, uma calibração do algoritmo Ant Colony

foi executada, dessa vez por meio de um experimento fatorial completo 2k. Wong e Komarudin

(2008) apresentam algumas referências de valores para os principais parâmetros do algoritmo,

o que permitiu a definição dos valores mais apropriados para os nı́veis de possı́veis valores para

os hiperparâmetros do método de busca, conforme ilustrado na Tabela 13:

Tabela 13: Plano do Experimento fatorial 2k de calibração do Algoritmo Ant Colony.

Parâmetro Descrição Nı́vel 1 Nı́vel 2

Npop População total 10 20

α Influência do feromônio 1 2

β Influência da visibilidade 0 1

ρ Taxa de evaporação 0,25 0,5

Q Quantidade de feromônio adicionada por formiga 1 2

Nupdate Melhores formigas que poderão adicionar feromônios 25% 50%

τmin Quantidade mı́nima de feromônio por aresta 0,05 1

τmax Quantidade máxima de feromônio por aresta 20 30

Os resultados dos 256 experimentos realizados com diferentes configurações de parâmetros

são apresentados na Tabela 14:

Tabela 14: Resultados dos Experimentos de calibração para o Algoritmo Ant Colony.

Rank Npop α β ρ Q τmin τmax Nupdate Custo

1 10 2 0 0,5 2 0,05 20 0,25 1.011.512,8

2 10 2 0 0,5 2 0,05 30 0,25 1.019.816,2

3 20 2 1 0,25 1 1,0 20 0,25 1.035.834,0

4 20 1 1 0,25 2 0,05 30 0,50 1.050.036,6

5 20 2 0 0,25 2 0,05 20 0,25 1.053.231,6

...

252 10 1 1 0,25 2 1,0 30 0,50 1.180.912,6

253 10 2 1 0,5 1 1,0 30 0,50 1.181.282,8

254 10 1 1 0,5 2 0,05 20 0,25 1.196.696,0

255 20 2 1 0,2 2 0,05 20 0,50 1.199.525,0

256 10 2 0 0,25 1 1,0 20 0,25 1.202.177,0

Sendo assim, os valores encontrados após o fim da calibração podem ser observados na

Tabela 15:
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Tabela 15: Parâmetros calibrados do Algoritmo Ant Colony.

Parâmetro Descrição Valor

Npop População total 10

α Influência do feromônio 2

β Influência da visibilidade 0

ρ Taxa de evaporação 0,5

Q Quantidade de feromônio adicionada por formiga 2

Nupdate N melhores formigas que poderão adicionar feromônios 2

τmin Quantidade mı́nima de feromônio por aresta 0,05

τmax Quantidade máxima de feromônio por aresta 20

Note ainda que, para a implementação e calibração do ACO, foi adotada uma técnica al-

ternativa de atualização da quantidade de feromônios dos caminhos percorridos pelas formigas,

conhecida na literatura como MMAS (MAX-MIN Ant System).

Uma das principais vantagens do MMAS é a sua capacidade de encontrar soluções de alta

qualidade de forma consistente. Isso se deve ao fato de que o MMAS utiliza uma estratégia

de atualização de feromônio que limita a quantidade de feromônio depositada pelas formigas

no percurso (τmin e τmax). Esse controle rigoroso ajuda a evitar a convergência prematura para

soluções subótimas, permitindo que o algoritmo explore continuamente o espaço de busca em

busca de soluções melhores.

Além disso, determinou-se uma quantidade máxima de formigas que podem adicionar fe-

romônios a cada geração (Nupdate). Dessa forma, são priorizados apenas os melhores trechos

para acelerar a convergência da população de formigas para espaços com maior potencial de

sucesso.

Na Figura 25, verifica-se o resultado obtido com o método de busca Ant Colony Optimiza-

tion para o exemplo de 5 produtos testado anteriormente. É possı́vel notar que a média do custo

da população apresentou oscilações durante sua queda gradativa que acompanhou a queda do

custo da melhor solução encontrada pelo algoritmo.
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Figura 25: Custo médio da população em cada iteração do Ant Colony.

Fonte: Elaborado pelo autor.

Por fim, na Figura 26, apresenta-se de forma consolidada os resultados de todos os algo-

ritmos implementados considerando uma mesma instância de problema. Nota-se que os al-

goritmos apresentam o comportamento esperado, com diminuição do valor da melhor solução

encontrada com o avanço do tempo. Além disso, a performance dos algoritmos atinge nı́veis

semelhantes após 60 segundos de execução.

Figura 26: Exemplo comparativo dos métodos de busca implementados.

Fonte: Elaborado pelo autor.

Portanto, com os algoritmos de busca implementados e calibrados, é possı́vel seguir para a

etapa de Experimentos de Comparação, que será apresentada no capı́tulo 6, no qual será descrita

a metodologia utilizada para avaliar e comparar o desempenho dos algoritmos.
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6 PLANEJAMENTO DOS EXPERIMENTOS DE
COMPARAÇÃO

Com o modelo de simulação-otimização implementado e calibrado, é possı́vel iniciar a

etapa dos experimentos de comparação. Nessa parte, será estudado o desempenho dos 4

métodos de busca implementados sob diferentes condições de estresse da linha de produção

e de complexidade do problema.

Para identificar o método numérico mais eficiente para a otimização dos parâmetros de con-

trole de estoque para o SELSP, serão realizados diferentes experimentos seguindo a metodolo-

gia do Design of Experiments (DoE). Essa abordagem permitirá a realização de uma avaliação

comparativa entre os algoritmos de otimização de forma sistemática e estatı́stica.

A metodologia do DoE começa pela identificação das variáveis de interesse que podem

afetar o desempenho dos algoritmos. No contexto em questão, essas variáveis podem incluir o

número de produtos (N ), a variabilidade da sistema (cv), a taxa de eficácia da máquina (ρ) e a

distribuição da demanda (p).

Uma vez identificados os fatores, é necessário definir os nı́veis em que cada variável será

testada. Na Tabela 16, são apresentados os fatores que serão variados durante os experimentos

e seus respectivos valores/nı́veis:

Tabela 16: Tabela resumo dos fatores do DoE e seus nı́veis.

Fator Descrição Nı́veis

N Número de produtos 5; 10; 20

cv Coeficiente de variação 10%; 25%; 50%

ρ Taxa de eficácia da máquina 70%; 80%; 90%

p Distribuição da demanda (geométrica) 0; 0,05; 0,15

Note que, para a distribuição da demanda, foi adotada uma distribuição geométrica. Essa

abordagem permite o controle dos diferentes nı́veis de distribuição com apenas um único fator,

que representa a probabilidade de sucesso (p) caracterı́stica dessa distribuição. Assim, quanto

maior o valor de p, menos uniforme é a distribuição da demanda entre os N produtos do pro-

blema, conforme ilustrado na Figura 27:



81

Figura 27: Distribuição geométrica para diferentes valores de p.

Fonte: Elaborado pelo autor.

Além das variáveis apresentadas na Tabela 16, que adotarão diferentes valores durante os

experimentos, são estabelecidos outros parâmetros, constantes ou semi-variáveis, que também

são importantes para a definição do problema, conforme apresentado na Tabela 17:

Tabela 17: Tabela resumo das variáveis usadas nos Experimentos de Comparação.

Parâmetro Descrição Tipo Valor

Mod Estratégia de sequenciamento Constante LDS

CMU Margem de contribuição unitária Constante R$ 40/produto

TCM Margem de contribuição total anual Constante R$ 1.000.000/ano

tsetup Tempo de setup Constante 1 h/setup

sc Custo de setup Constante R$ 250/setup

lc Custo de vendas perdidas Constante R$ 40/unid.

hc Custo de armazenagem unitário Constante R$ 0, 1/unid./dia

T sim Número de dias simulados Constante 100 dias

Tdemanda Demanda total anual Semi-variável 25.000 unid./ano

tprod Tempo de processamento médio Semi-variável X h/unid.

O próximo passo do DoE é a geração de experimentos, em que cada experimento repre-

senta uma combinação especı́fica de nı́veis das variáveis. Tendo em vista o baixo custo para a

realização de cada um dos experimentos, optou-se pela realização de um experimento fatorial

completo com 3 repetições, totalizando 972 ensaios, sendo 324 ensaios únicos (81 para cada

um dos 4 métodos de busca), conforme apresentado na Tabela 18.

Além disso, para a realização dos experimentos, determinou-se que o espaço de solução
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explorado seria limitado a valores entre 0 e 1.000 para quaisquer variáveis. Todos os algoritmos

tiveram um tempo máximo de execução de 60 segundos para cada um dos ensaios.

Portanto, no contexto deste estudo, o DoE será uma ferramenta essencial para avaliar o

desempenho dos algoritmos de otimização (Random Search - RD, Nelder-Mead - NM, Genetic

Algorithm - GA e Ant Colony - ACO) diante das variações nos parâmetros do problema, con-

tribuindo para uma escolha mais informada e eficaz do algoritmo a ser utilizado em diferentes

situações de otimização.

Tabela 18: Tabela resumo do plano de Experimentos de Comparação.

Ordem Padrão Ordem dos Ensaios N cv ρ p Algoritmo

470 1 5 0,2 0,7 0,0 NM

395 2 20 0,2 0,9 0,1 GA

376 3 20 0,2 0,8 0,0 ACO

312 4 10 0,5 0,8 0,1 ACO

968 5 10 0,5 0,9 0,1 ACO

64 6 20 0,2 0,9 0,0 ACO

465 7 5 0,1 0,9 0,1 RD

292 8 10 0,5 0,7 0,0 ACO

708 9 20 0,2 0,8 0,1 ACO

231 10 10 0,1 0,8 0,0 GA

...

725 963 20 0,5 0,7 0,1 RD

212 964 5 0,5 0,9 0,1 ACO

460 965 5 0,1 0,9 0,0 ACO

886 966 10 0,1 0,8 0,1 NM

150 967 5 0,2 0,7 0,1 NM

10 968 20 0,1 0,7 0,1 NM

524 969 5 0,5 0,8 0,1 ACO

732 970 20 0,5 0,7 0,1 ACO

533 971 5 0,5 0,9 0,1 RD

972 972 10 0,5 0,9 0,1 ACO

Os resultados dos experimentos de comparação serão analisados estatisticamente no

capı́tulo 7 para determinar como as diferentes variáveis afetam o desempenho dos algorit-

mos e identificar qual algoritmo apresenta melhor desempenho na resolução do problema de

otimização dos parâmetros de estoque no contexto do Stochastic Economic Lot Scheduling Pro-
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blem (SELSP).
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7 DISCUSSÃO DOS RESULTADOS

Neste capı́tulo, apresentam-se os resultados dos 972 experimentos do DoE de comparação

proposto no capı́tulo 6. Os experimentos foram executados em um computador pessoal com

processador M1 com arquitetura ARM de 8 núcleos e 16 GB de RAM com frequência de 4.266

MHz.

A Tabela 20 exibe uma amostra dos resultados obtidos para cada ensaio do DoE, onde são

apresentados os parâmetros que definem a instância do problema; as variáveis resposta - Custo

de estoque total (TIC) e Nı́vel de serviço (SL); e as variáveis de decisão (si, Si), que representam

os parâmetros de estoque para cada produto.

Ao analisar-se os efeitos do número de produtos no custo de estoque (Figura 28 e Tabela

19), é possı́vel notar que há uma correlação positiva entre o custo e o número de produtos,

possivelmente pela maior necessidade de estocagem de itens.

É interessante notar também que há uma maior dispersão entre os resultados para o caso de

N = 5 e esse comportamento é ocasionado, possivelmente, pela maior intensidade de demanda

dos produtos (i.e. rateio da demanda total em poucos produtos). Essa caracterı́stica pode tornar

mais complexa a busca por nı́veis ótimos de estoque que equilibrem custos de armazenamento

baixos e minimização da penalização por vendas perdidas.

Essa hipótese é reforçada quando se observa a Tabela 19, na qual o nı́vel de serviço médio

para soluções com 5 produtos é o menor, indicando maiores custos com vendas perdidas.

Tabela 19: Média e desvio padrão dos resultados para diferentes nı́veis de N .

TIC SL

N Média Desv. pad. Média Desv. pad.

5 113.443,56 41.486,46 95,27 4,74

10 112.458,95 13.878,13 98,54 1,25

20 164.414,18 14.511,26 98,83 1,03
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Figura 28: Boxplots com dispersão das amostras para os diferentes nı́veis de N .

Fonte: Elaborado pelo autor.

Em seguida, analisa-se o efeito de cv (coeficiente de variação) no custo. Por meio da

Figura 29 e da Tabela 21, percebe-se que as soluções encontradas tendem a ter comporta-

mentos semelhantes, indicando uma baixa influência desse fator no custo das soluções. Ao

mesmo tempo, isso revela uma alta robustez do modelo de simulação-otimização para encon-

trar soluções mesmo em cenários de maior incerteza operacional.

Figura 29: Boxplots com dispersão das amostras para os diferentes nı́veis de cv.

Fonte: Elaborado pelo autor.
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Tabela 21: Média e desvio padrão dos resultados para diferentes nı́veis de cv.

TIC SL

cv Média Desv. pad. Média Desv. pad.

0,10 131.018,56 38.131,75 97,41 3,83

0,25 129.191,77 35.346,70 97,53 3,33

0,50 130.106,36 34.507,78 97,70 2,67

De forma similar, analisa-se o impacto de ρ no custo das soluções. Sendo esse fator equiva-

lente ao nı́vel de eficácia da máquina, é natural esperar uma correlação negativa entre a taxa de

eficácia da máquina e o custo, uma vez que uma menor eficácia implica, em geral, em maiores

nı́veis de estoque devido à menor confiabilidade do sistema. Esse comportamento é confirmado

pelos resultados obtidos, conforme apresentado pela Figura 30 e pela Tabela 22.

Figura 30: Boxplots com dispersão das amostras para os diferentes nı́veis de ρ.

Fonte: Elaborado pelo autor.

Tabela 22: Média e desvio padrão dos resultados para diferentes nı́veis de ρ.

TIC SL

ρ Média Desv. pad. Média Desv. pad.

0,7 148.600,31 28.440,41 95,73 4,62

0,8 126.623,52 29.031,93 97,84 2,26

0,9 115.092,85 40.777,61 99,07 0,86

Já o fator p apresenta um comportamento similar ao do fator cv, com uma baixa influência
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aparente da heterogeneidade das demandas dos SKUs no custo de estoque total, conforme ilus-

trado na Figura 31 e na Tabela 23. Esse fato reforça a capacidade do modelo construı́do de obter

soluções para diferentes condições operacionais de demanda.

Figura 31: Boxplots com dispersão das amostras para os diferentes nı́veis de p.

Fonte: Elaborado pelo autor.

Tabela 23: Média e desvio padrão dos resultados para diferentes nı́veis de p.

TIC SL

p Média Desv. pad. Média Desv. pad.

0,00 128.612,01 34.563,72 97,65 3,24

0,05 129.988,41 35.364,88 97,50 3,43

0,15 131.716,26 38.022,37 97,49 3,27

Finalmente, pela Figura 32 e pela Tabela 24, analisam-se os impactos dos métodos de busca

implementados nos custos das soluções. É possı́vel perceber que o método de busca Nelder-

Mead encontrou soluções melhores do que os outros métodos, além de apresentar uma menor

dispersão entre as amostras. Já os outros três métodos (Busca aleatória, Genetic Algorithm e

Ant-Colony) apresentaram performances semelhantes, sendo o Genetic Algorithm o método de

busca com a performance geral menos interessante.



89

Figura 32: Boxplots com dispersão das amostras para os métodos de busca.

Fonte: Elaborado pelo autor.

Tabela 24: Média e desvio padrão dos resultados para diferentes métodos de busca.

TIC SL

Método Média Desv. pad. Média Desv. pad.

ACO 133.173,14 37.525,93 97,48 3,07

GA 138.236,79 37.815,27 96,56 4,10

NM 115.424,01 27.708,92 98,91 1,62

RD 133.588,31 35.908,79 97,24 3,49

De forma a verificar e mensurar a influência dos diferentes fatores testados no custo total

de estoque para o problema estudado, uma Análise de Variância foi realizada e é apresentada

na Tabela 25. Ainda, na Equação 7.1, é representado o modelo linear proposto para realizar a

Análise de Variância citada:

TIC = n+ cv + ρ+ p+ alg + n : cv + n : ρ+ n : p+ n : alg

+ cv : ρ+ cv : p+ cv : alg + ρ : p+ ρ : alg + p : alg (7.1)

Note que para um nı́vel de significância de α = 5%, todos os efeitos principais testados

são significativos para o custo, com exceção do fator cv. Ainda, considerando esses fatores, os

principais efeitos são os dos fatores N , ρ e dos algoritmos de busca, sendo a distribuição da

demanda um fator com efeito menos intenso, conforme havia sido observado anteriormente.
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É importante ressaltar que a Tabela 25 indica que o emprego de diferentes métodos de busca

traz diferenças estatisticamente relevantes (mesmo para nı́veis de significância extremamente

baixos: α < 2 × 10−16) para o custo total de estoque. Sendo assim, analisa-se a seguir o

impacto dos algoritmos para diferentes instâncias do SELSP.

Tabela 25: Análise de Variância para o Custo Total de estoque.

Fator
Grau de

liberdade

Soma de

quadrados

Quadrados

médios
F value Pr(>F)

n 2 5, 722× 1011 2, 861× 1011 1697, 925 < 2× 10−16 ***

cv 2 5, 406× 108 2, 703× 108 1,604 0,201623

rho 2 1, 878× 1011 9, 389× 1010 557, 188 < 2× 10−16 ***

p 2 1, 568× 109 7, 839× 108 4,652 0,009770 **

alg 3 7, 368× 1010 2, 456× 1010 145, 750 < 2× 10−16 ***

n : cv 4 1, 308× 1010 3, 270× 109 19, 406 2, 45× 10−15 ***

n : rho 4 2, 148× 1011 5, 370× 1010 318, 681 < 2× 10−16 ***

n : p 4 3, 781× 109 9, 453× 108 5,610 0,000184 ***

n : alg 6 1, 231× 1010 2, 051× 109 12, 171 3, 38× 10−13 ***

cv : rho 4 4, 769× 109 1, 192× 109 7, 076 1, 31× 10−05 ***

cv : p 4 2, 496× 108 6, 240× 107 0,370 0,829880

cv : alg 6 1, 583× 109 2, 639× 108 1,566 0,153916

rho : p 4 1, 177× 109 2, 942× 108 1,746 0,137820

rho : alg 6 1, 595× 1010 2, 658× 109 15, 773 < 2× 10−16 ***

p : alg 6 1, 219× 109 2, 032× 108 1,206 0,300744

Resı́duos 912 1, 537× 1011 1, 685× 108

Notas: Nı́vel de signifância: 0 ’***’ 0,001 ’**’ 0,01 ’*’ 0,05 ’.’ 0,1 ’ ’ 1

Na Figura 33, comparam-se os resultados obtidos pelos diferentes métodos de busca para

as interações de segundo grau com os demais fatores testados no DoE (N , cv, ρ e p). Ao

observar as Figuras 33b, 33c e 33d, de forma geral, a diferença relativa de performances dos

algoritmos é a mesma para as diferentes instâncias do problema, sendo o algoritmo Nelder-

Mead consistentemente o método que atinge menores custos entre os quatro.
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Figura 33: Boxplots com dispersão das amostras para os métodos de busca para diferentes
configurações de (a) N , (b) cv, (c) ρ e (d) p.

(a) Boxplots com dispersão das amostras para os métodos de busca versus N .

Fonte: Elaborado pelo autor.

(b) Boxplots com dispersão das amostras para os métodos de busca versus cv.

Fonte: Elaborado pelo autor.
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(c) Boxplots com dispersão das amostras para os métodos de busca versus ρ.

Fonte: Elaborado pelo autor.

(d) Boxplots com dispersão das amostras para os métodos de busca versus p.

Fonte: Elaborado pelo autor.

Porém, ao analisar-se a Figura 33a, nota-se um aumento no distanciamento entre os de-

sempenhos dos algoritmos com o aumento do número de produtos. Se, por um lado, para

poucos produtos (N = 5) há uma maior proximidade entre os desempenhos entre os algoritmos

Nelder-Mead e Ant-Colony (sendo estes os dois melhores métodos nessas condições), quando

se aumenta o número de produtos (N = 20) o método de Nelder-Mead passa a ser indiscuti-

velmente o melhor método, enquanto o algoritmo Ant-Colony passa a ser o método com a pior

performance, conforme ilustrado na Figura 34. Além disso, por meio da Tabela 26, nota-se que
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o algoritmo Nelder-Mead apresenta custos de 11 a 24% inferiores do que os outros métodos.

Figura 34: Gráfico de interação entre os fatores “métodos de busca” e “número de produtos
N”.

Fonte: Elaborado pelo autor.

Tabela 26: Diferença percentual entre o custo médio do Nelder-Mead versus os demais algorit-
mos para diferentes nı́veis de N .

N NM vs. ACO NM vs. GA NM vs. RD

5 -12,2% -23,8% -17,4%

10 -11,5% -13,2% -11,2%

20 -15,3% -13,3% -12,6%

O fato acima pode ser explicado pela diferença de requisitos exigida pelos dois métodos.

Enquanto o algoritmo de Nelder-Mead pode ser executado em espaços contı́nuos de soluções, o

algoritmo Ant-Colony exige uma discretização do espaço para que o problema possa ser repre-

sentado como um grafo. Dessa forma, com o aumento do número de produtos, a dimensão do

problema a ser estudado aumenta e o tamanho e densidade do grafo que representa o problema

crescem de forma exponencial, o que provavelmente influencia negativamente na performance

do algoritmo e dificulta sua aplicação em cenários com grande quantidade de produtos.

Para verificar a relevância estatı́stica dessa diferença entre o desempenho médio dos algo-

ritmos, realiza-se um teste HSD de Tukey (Honest Significant Differences). Esse teste é uma

ferramenta estatı́stica de comparação múltipla utilizada para identificar diferenças significativas

entre as médias de vários grupos em um conjunto de dados.
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Figura 35: Teste de Tukey para os métodos de busca.

Fonte: Elaborado pelo autor.

A Figura 35 indica que, para um nı́vel de significância de α = 5%, o algoritmo de Nelder-

Mead apresenta, de fato, um desempenho superior aos demais métodos de busca, já que é

possı́vel afirmar que há uma diferença não nula entre as médias de desempenho dos algoritmos.

De forma, geral, a maior diferença de desempenho ocorre quando compara-se os algoritmos

Nelder-Mead e Genetic Algorithm, dado que o primeiro apresentou soluções com custos médios

cerca de 20.000 unidades monetárias mais baratos, em média, do que o último.

Conforme observado anteriormente, por meio Figura da 36, confirma-se o destaque de de-

sempenho do Nelder-Mead perante os outros métodos de busca para todos os nı́veis de N tes-

tados. Ainda, é possı́vel confirmar que, conforme o problema torna-se mais complexo (i.e.

maiores valores de N ), a diferença de desempenho entre os métodos de busca aleatória, Al-

goritmo Genético e Ant-Colony torna-se quase irrelevante para um nı́vel de significância de

α = 5%, conforme apresentado nas Figuras 36b e 36c.
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Figura 36: Testes de Tukey para os métodos de busca para (a) N = 5, (b) N = 10 e (c)
N = 20.

(a) Teste de Tukey para os métodos de busca com N = 5.

Fonte: Elaborado pelo autor.

(b) Teste de Tukey para os métodos de busca com N = 10.

Fonte: Elaborado pelo autor.
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(c) Teste de Tukey para os métodos de busca com N = 20.

Fonte: Elaborado pelo autor.

Por fim, nas Figuras 37 e 38, apresentam-se duas análise de resı́duos para verificar a va-

lidade de algumas das hipóteses adotadas para a execução da Análise de Variância realizada

nesta seção. Na Figura 37, nota-se que a grande maioria dos pontos acompanha a linha da

reta normal, tendo maior dispersão nos valores extremos em direções opostas, o que indica a

validade da hipótese de normalidade na distribuição dos resı́duos. Em seguida, pela Figura 38,

observa-se que a linha vermelha tende a manter-se próxima da linha tracejada, o que fornece

um forte indı́cio de aderência dos dados ao modelo linear proposto (Equação 7.1).

Figura 37: Gráfico Q-Q de resı́duos padronizados.

Fonte: Elaborado pelo autor.
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Figura 38: Gráfico Resı́duos vs Fitted.

Fonte: Elaborado pelo autor.

Portanto, a análise dos resı́duos permite validar o modelo proposto para a análise do de-

sempenho dos diferentes métodos de busca implementados para a resolução do problema de

otimização dos parâmetros de controle de estoque no contexto do SELSP.

Por fim, além dos resultados obtidos pelos métodos de busca, propõe-se a discussão dos

efeitos da calibração nos resultados observados. Como explicado na seção 5, cada método de

busca exigiu uma etapa de calibração dos seus hiperparâmetros. Porém, devido à diferença

entre as quantidades de parâmetros a serem calibrados em cada método (vide Tabela 5) e o

tempo necessário para a execução dos experimentos de calibração, a busca de valores ótimos

para os hiperparâmetros de métodos mais complexos (ex: Genetic Algorithm e Ant-Colony)

torna-se mais trabalhosa.

Diante de cenários com restrições de tempo e recursos, esse fato pode limitar a performance

dos algoritmos, já que os esforços para a exploração dos experimentos de calibração podem ser

reduzidos. Nesse sentido, algoritmos com menos parâmetros, tais como o Nelder-Mead, podem

tornar-se mais atrativos, pois permitem uma melhor exploração do espaço de possı́veis valores

dos parâmetros, o que pode aumentar as chances de ganho de performance do método de busca.

Dessa forma, diante dos resultados e discussões apresentados anteriormente, no capı́tulo 8

a seguir, apresentam-se as principais conclusões obtidas por meio deste Trabalho de Formatura,

assim como ressalvas e possı́veis desdobramentos futuros para o Trabalho.
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8 CONCLUSÕES

8.1 Sı́ntese

O controle de estoques é foco de atenção para muitas empresas devido a sua importância

financeira e operacional. Porém, ainda que largamente estudado, a calibração de parâmetros de

estoque ainda levanta desafios às empresas, que acabam por recorrer a diferentes soluções para

otimizar sua operação.

Nesse sentido, o presente Trabalho de Formatura se propôs a estudar o problema de

calibração de parâmetros de estoque no contexto do Stochastic Economic Scheduling Problem

(SELSP), que consiste na programação de uma única máquina capaz de produzir múltiplos pro-

dutos, mas apenas um tipo de cada vez. Embora teórico, o SELSP ilustra a realidade de muitas

indústrias, principalmente do setor quı́mico, cosmético e têxtil, evidenciando a contribuição

prática do estudo para a indústria.

Para tratar do problema de calibração dos parâmetros de estoque, foi proposta uma aborda-

gem por meio de um modelo de simulação-otimização estruturado em uma plataforma aberta,

o Python. Essa abordagem trouxe diversas vantagens para resolução do problema.

A primeira vantagem foi a integração entre o modelo de simulação e de otimização dos

parâmetros de estoque, o que permitiu que os valores sugeridos pelo modelo de otimização

pudessem ser facilmente avaliados pelo modelo de simulação. Além disso, os resultados da

simulação puderam ser usados para alimentar o modelo de otimização novamente, estabele-

cendo um ciclo de retroalimentação entre os modelos de forma sinérgica.

Ainda, a abordagem adotada permitiu ter maior transparência e controle sobre o método

de otimização. Em geral, as empresas buscam softwares licenciados/pagos para poder otimizar

seus indicadores operacionais. Porém, há pouca visibilidade sobre a metodologia de otimização

adotada por essas ferramentas, fazendo com que o processo de otimização se torne uma “caixa

preta”. Em geral, essas soluções de mercado não adotarão o método de otimização mais ade-

quado para o problema da empresa, já que elas são oferecidas para diferentes problemas, sendo

então necessário fazer uso de métodos mais genéricos.

Todavia, a implementação de um modelo próprio em Python permitiu que fossem testados
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diferentes métodos de busca de forma a verificar qual seria o mais adequado para o problema es-

tudado. Além disso, essa abordagem permitiu o ajuste fino dos métodos por meio da calibração

de seus hiperparâmetros para melhorar ainda mais o desempenho do método de otimização para

a calibração dos parâmetros de estoque.

Ademais, como mencionado acima, a implementação do modelo de simulação-otimização

em uma plataforma open source permite oferecer uma ferramenta para a resolução do problema

estudado de forma gratuita, sem a necessidade de adquirir licenças para softwares, além de

poder receber contribuição de outros pesquisadores que tenham interesse em dar continuidade

ao estudo do problema.

Uma das realizações fundamentais deste trabalho foi a avaliação de quatro métodos de

busca diferentes, a saber: Busca Aleatória, Nelder-Mead, Genetic Algorithm e Ant-Colony Op-

timization. Notavelmente, o Nelder-Mead destacou-se tanto em desempenho (soluções até 24%

melhores) como em praticidade, demonstrando maior eficácia na busca por soluções ótimas e

maior facilidade na calibração de hiperparâmetros em relação aos outros métodos testados.

O algoritmo se mostrou mais eficiente em diferentes condições, como ambientes de maior

incerteza/variabilidade, mas também em cenários de maior complexidade. O ganho de desem-

penho se tornou mais notável em problemas de maior dimensão, muito por causa da flexibili-

dade do método em buscar soluções em espaços contı́nuos. Esse destaque reforça a importância

crı́tica da escolha desse método de busca na otimização do problema SELSP, devido à maior

eficácia em cenários diversos.

Em resumo, a implementação bem-sucedida de um modelo de simulação-otimização em

Python, com o método de busca Nelder-Mead, apresentou uma contribuição significativa para

o campo da otimização de parâmetros de estoque em ambientes de produção complexos, como

o SELSP. Essa abordagem flexı́vel e acessı́vel não apenas trouxe uma ferramenta de solução

para o problema, mas também refletiu um compromisso com a acessibilidade e a redução

da dependência de soluções comerciais. Dessa forma, o Trabalho proporcionou uma valiosa

contribuição para a comunidade cientı́fica e industrial, oferecendo uma alternativa de código

aberto para abordar desafios de otimização de estoque.

8.2 Limitações e desdobramentos futuros

Reconhece-se que o presente Trabalho apresenta certas limitações, que podem ser usadas

para orientar futuros trabalhos sobre o tema. A calibração dos métodos de busca, embora es-

sencial, permanece um desafio. Neste trabalho, optou-se pelo uso de um experimento fatorial
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completo para a realização dos experimentos de calibração dos métodos de busca, sendo testa-

das aproximadamente 256 combinações de hiperparâmetros para cada método. A abordagem

adotada pode ser mais vulnerável a nı́veis de calibração subótimos dos métodos de busca, o que

pode afetar diretamente o desempenho dos métodos testados.

Além disso, neste Trabalho foram avaliados 4 métodos de busca, embora na literatura exis-

tam diversos outros métodos que poderiam ser adaptados ao problema estudado. Sendo assim, a

avaliação de métodos não foi exaustiva e abre oportunidades para que sejam explorados outros

algoritmos de otimização.

Nesse sentido, melhorias na calibração de hiperparâmetros e a exploração de outros

métodos de otimização devem ser áreas de foco contı́nuo para futuros desdobramentos deste

trabalho. Além disso, a incorporação de métodos de busca local pode permitir uma exploração

mais profunda do espaço de soluções, aprimorando ainda mais os resultados obtidos.

Outra direção futura sugerida é a implementação da calibração online de hiperparâmetros.

Essa abordagem pode tornar o modelo mais adaptável às estratégias de diversificação e

intensificação na busca de soluções, permitindo uma otimização contı́nua e flexı́vel para o

problema estudado. Além disso, a busca por métodos de calibração mais avançados para os

hiperparâmetros dos métodos de busca pode aumentar a robustez do processo de otimização.

8.3 Disponibilidade de dados

Os dados e modelos que embasam os resultados obtidos neste Trabalho podem ser encon-

trados no repositório online a seguir: Repositório do GitHub.

https://github.com/yu9800/SELSP_simOpt
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LARRAÑETA, J.; ONIEVA, L. The economic lot-scheduling problem: A simple approach. The
Journal of the Operational Research Society, Palgrave Macmillan Journals, v. 39, n. 4, p. 373–
379, 1988. ISSN 01605682, 14769360. Disponı́vel em: ⟨http://www.jstor.org/stable/2582117⟩.

https://books.google.com.br/books?id=5SezxR5q4mYC
https://books.google.com.br/books?id=5SezxR5q4mYC
https://www.sciencedirect.com/science/article/pii/S1476927115000183
https://www.sciencedirect.com/science/article/pii/S1476927115000183
https://books.google.com.br/books?id=_s9L8YBgVmEC
https://books.google.com.br/books?id=k0jFfsmbtZIC
https://books.google.com.br/books?id=k0jFfsmbtZIC
https://www.sciencedirect.com/science/article/pii/S0925527306000661
https://www.sciencedirect.com/science/article/pii/S0925527306000661
http://www.jstor.org/stable/2582117


102
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APÊNDICE A

A.1 Exemplo de funcionamento do Modelo SimOpt cons-
truı́do

Figura 39: Modelo SimOpt - Exemplo de configuração de uma instância de problema no
modelo com N = 10, cv = 0, 1, ρ = 0, 9, p = 0, 05 e tempo máximo de execução de 3 min.

Fonte: Elaborado pelo autor.
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Figura 40: Modelo SimOpt - Exemplo de simulação da distribuição da demanda entre os
produtos a partir dos parâmetros indicados na configuração do problema.

Fonte: Elaborado pelo autor.

Figura 41: Modelo SimOpt - Exemplo de output do método de busca, com indicação dos
mellhores pares (si, Si) encontrados para cada produto.

Fonte: Elaborado pelo autor.
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Figura 42: Modelo SimOpt - Exemplo de simulação da evolução do estoque e dos indicadores
de performance da fábrica utilizando os parâmetros de estoque sugeridos pelo método de

busca.

Fonte: Elaborado pelo autor.


