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RESUMO

Este Trabalho de Formatura aborda o problema de calibracdo de parametros de controle de
estoque no contexto do Stochastic Economic Scheduling Problem (SELSP), considerando uma
linha de producdo em lotes, com multiplos produtos. Para abordar esse problema, desenvolveu-
se um modelo de simulag¢do-otimizacao em Python, com o qual foram testados quatro métodos
de busca/otimizacdo distintos (Busca aleatéria, Nelder-Mead, Genetic Algorithm e Ant Colony
Optimization). Para calibrar esses algoritmos, desenvolveu-se um plano de experimentos de
calibracdo para cada método de busca. Em seguida, com os métodos calibrados, um experi-
mento fatorial foi realizado para avaliar e comparar o desempenho dos algoritmos. Por meio
de uma andlise de variancia dos resultados obtidos nos experimentos, notou-se que o algo-
ritmo Nelder-Mead se mostrou o mais eficiente em termos de resultados obtidos (ex: custos
e nivel de servigo), propondo solugdes de custos até 24% inferiores as dos outros métodos,
além de apresentar maior facilidade de calibracdo dos seus hiperpardmetros. A abordagem
adotada neste Trabalho, que resultou na elaboracdo de um modelo de simulacdo-otimizagdo
em Python usando o método de otimizacdo Nelder-Mead, apresenta beneficios em relagdes a
solugdes comerciais existentes, ja que estas, muitas vezes, operam como “‘caixas pretas” e nao
sdo ferramentas especificas para este problema. Dessa forma, o presente Trabalho permitiu
uma maior transparéncia e controle sobre o processo de otimizagao dos parametros de controle
de estoque. Além disso, a implementacdo do modelo de simulagdo-otimizagdo representa uma
contribui¢do significativa para a otimizacdo de parametros de estoque em problemas comple-
xos de producao, como o SELSP. Essa abordagem flexivel e acessivel ndo apenas oferece uma
ferramenta de c6digo aberto para resolver esse desafio, mas também busca oferecer maior aces-
sibilidade e independéncia de solu¢des comerciais. Com isso, o trabalho traz contribui¢des para
a comunidade académica e incentivos a industria na busca por solucdes eficazes no controle
de estoques, ja que o cendrio do problema estudado espelha muitas indistrias, como as dreas
quimica, cosmética e téxtil, evidenciando a relevancia prética da pesquisa para a industria.

Palavras-Chave — Controle de estoque, Simula¢do-otimiza¢do, SELSP, Industria de pro-
cessos, Processos continuos



ABSTRACT

This work addresses the stock control parameter calibration problem in the context of the
Stochastic Economic Scheduling Problem (SELSP), considering a batch production line with
multiple products. To address this issue, a simulation-optimization model was developed using
Python, and four distinct search/optimization methods (Random Search, Nelder-Mead, Gene-
tic Algorithm, and Ant Colony Optimization) were tested with this model. To calibrate these
algorithms, a calibration experiment plan was developed for each search method. Subsequen-
tly, with the calibrated methods, a factorial experiment was conducted to assess and compare
the performance of the algorithms. Through an analysis of variance of the results obtained in
the experiments, it was observed that the Nelder-Mead algorithm proved to be the most ef-
ficient in terms of results (e.g., costs and service level), proposing cost solutions up to 24%
lower than those of other methods, in addition to showing greater ease in calibrating its hy-
perparameters. The approach adopted in this work, which resulted in the development of a
simulation-optimization model in Python using the Nelder-Mead optimization method, offers
benefits compared to existing commercial solutions, which often operate as “black boxes” and
are not specific tools for this problem. Thus, this work allowed for greater transparency and con-
trol over the optimization process of stock control parameters. Furthermore, the implementation
of the simulation-optimization model represents a significant contribution to the optimization of
stock parameters in complex production problems, such as SELSP. This flexible and accessible
approach not only provides an open-source tool to solve this challenge but also seeks to offer
greater accessibility and independence from commercial solutions. Therefore, this work con-
tributes to the academic community and encourages the industry to seek effective solutions in
stock control, as the studied problem scenario mirrors many industries, including the chemical,
cosmetic, and textile sectors, highlighting the practical relevance of the research for the industry

Keywords — Inventory control, Simulation-optimization, SELSP, Process industry, Conti-
nuous processes
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1 INTRODUCAO

Neste capitulo, apresenta-se uma contextualizacdo do trabalho, seguida da definicdo do
problema e dos objetivos principais. A seguir, apresentam-se a justificativa para a realiza¢do

deste trabalho e a sua estrutura.

1.1 Contexto

O controle de estoques € parte essencial para o gerenciamento de diversos negdcios. O
correto dimensionamento e monitoramento dos niveis de estoque em uma empresa pode afetar
diretamente tanto os resultados operacionais quanto os financeiros da organiza¢cdo. Uma tomada
de decisdo assertiva em relagcdo a politicas de reposicao e tamanhos dos lotes pode garantir a

empresa elevados niveis de servico, sem onerar suas financas de forma desnecessaria.

Por outro lado, ineficiéncias no controle de lotes podem gerar atrasos ou perdas de pedidos
e consequente insatisfacdo de seus clientes, resultando em perda de receita e/ou aumento de
custos da operacdo (i.e. custo de manutengdo de estoque, custo de venda perdida, custo de

oportunidade, etc).

Por isso, pesquisadores e empresas t€ém dado grande atencdo ao estudo de problemas de
controle de estoque, o que tem motivado a producdo de estudos académicos e o desenvolvimento

de softwares voltados para solugdes industriais.

Nesse sentido, a calibracdo dos parametros de controle de estoque tem se tornado um impor-
tante processo na gestdo das organizacOes. Essa pratica visa a ajustar e otimizar os parametros
que definem os pontos de reposi¢do, as politicas de reabastecimento e a frequéncia de pedidos
de forma a atingir os niveis ideais de estoque médio, equilibrando a disponibilidade de produtos

com o0s custos associados ao seu armazenamento.

Uma possivel abordagem para a calibracdo do controle de estoques € a utilizacdo de
métodos de simulacdo e otimizag¢do, principalmente nas situacdes em que nao hd uma expressao
analitica satisfatoria para a funcdo objetivo. Por meio dessa metodologia, que relaciona as
varidveis de decisdao (parametros de controle de estoque) e a funcdo objetivo (custo total de es-
toque), € possivel simular diferentes cendrios e verificar, para cada configuracao de parametros

de controle, o impacto no sistema. Com o auxilio do modelo de otimizagado, buscam-se melho-



17

res solugdes com base nos resultados obtidos anteriormente.

Nesse contexto, o presente estudo abordard a calibracdo dos parametros de controle de
estoques de produtos acabados, em uma linha de produgdo continua, utilizando a abordagem
de simulagdo-otimizacdo para determinar os valores desses parametros de forma a balancear

objetivos operacionais e financeiros de um sistema de producao.

1.2 Formulacao do problema

O presente Trabalho de Formatura aborda o problema de controle de estoque conhecido na
literatura por Stochastic Economic Lot Scheduling Problem (SELSP). O problema consiste na
programagdo de uma maquina capaz de produzir N produtos, mas apenas um tipo de cada vez
(i.e. uma méiquina com producdo em lotes). Essa configuracdo exige que haja uma decisdo a
ser tomada toda vez que € concluido um lote de producdo, sendo preciso decidir qual serd o

proximo SKU (Stock Keeping Unit) a entrar em producdo e qual a quantidade a produzir.

Embora, tradicionalmente, o SELSP consista na determinacdo de uma sequéncia de
producgdo e no dimensionamento dos lotes (potencialmente fixos) para a minimizagdo do custo
médio total, o presente trabalho aborda esse problema de forma diferente. Tendo em vista
os modelos classicos de ponto de pedido, o problema abordado por esse Trabalho de Forma-
tura passa a ser a determinacao dos parametros de controle de estoque que minimizam o custo
médio total. Essa abordagem proposta, embora mais simples, torna mais vidvel a aplicacdo do

problema em casos reais.

Durante a producdo, primeiramente, verificam-se quais sdo os SKU’s que estdo abaixo
de seus respectivos pontos de reabastecimento, s;. Em seguida um produto é escolhido para
ser produzido com base em seu tempo de cobertura (i.e. Nivel de estoque atual - demanda
esperada), sendo os produtos com menor cobertura os mais prioritarios (Lowest Days of Supply
- LDS). O tamanho do lote do produto é definido pelo nivel de estoque médximo, .S;, do produto
e seu nivel de estoque atual. Note que caso ocorram pedidos durante a producdo do lote, o
nivel de estoque maximo nao serd atingido apds a finalizacdo do lote. Ainda, destaca-se que a
producdo de um lote ndo pode ser interrompida apds seu inicio e caso ndo existam itens abaixo

do ponto de abastecimento, a produgdo fica ociosa.

Sendo assim, o problema a ser resolvido € a determinagdo dos valores dos parametros de
estoque maximo, .S;, € o ponto de reabastecimento, s;, para cada um dos N produtos manufatu-
rados na fabrica (i.e. (s;,5;) Vi = 1,2,..., N) para minimizar o custo médio total de estoque. A

solucdo desse problema ndo pode ser encontrada de forma analitica e serd abordada pelo autor
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por meio de um método de simulagdo-otimizagao.

Para sistemas de producdo com multiplos produtos cujas demandas sdo estaciondrias, a
determinacdo dos parametros de estoque torna-se complexa (Figura 1), devendo levar em
consideracdo diversos outros fatores como: tempos de setup, nimero de produtos, politicas
de priorizacdo de produtos, entre outros. Pela Figura 1, é possivel perceber que um dimen-
sionamento equivocado dos parametros de controle de estoque pode levar a falta de estoque,

mesmo que a taxa de utilizacao do setor de producdo esteja abaixo de seu nivel méximo.

Em geral, a calibracdo dos parametros de estoque na indistria é feita por meio de softwa-
res desde os mais simples, como o Excel (BARRY; JAY; CHUCK, 2017), até softwares mais
robustos comercializados por diferentes empresas, tais como o OptQuest, comercializado pela
OptTek System Inc. Contudo, as diferentes alternativas restringem a exploracao do presente pro-
blema estudado devido a limita¢des dos proprios softwares em termos de ferramentas/recursos,
a falta de clareza sobre o método de otimizacao utilizado, a limitacdes de integragdes entre dife-
rentes solugdes (ex: softwares diferentes para simulacao e otimizagao) e, de forma mais pratica,

a necessidade de se adquirir licengas para utilizd-los.

Figura 1: Exemplo de monitoramento do nivel de estoque de quatro produtos com pardmetros
de controle (s, S) para uma demanda estocdstica.

Nivel de
estoque
A

Estoque
— = maximo

Produto 1
Produto 2
Produto 3
Produto 4

Ponto de
reabastecimento

»

Atividade do Modulo

44— — — — Ocioso — — — —P|—— Ativo —P|@— - Ocioso — P|<@— Ativo —P» .
de Produgao

Fonte: Elaborado pelo autor.
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1.3 Objetivos do trabalho

O objetivo deste Trabalho de Formatura consiste na identificacdo e implementacdo de
métodos numéricos eficientes para a otimizacdo dos parametros de controle de estoque

(si,S;)) Vi=1,2,..., N, no contexto do problema descrito na se¢do 1.2.

Além disso, o trabalho busca oferecer uma solu¢do de implementacdo em um software livre
e de codigo aberto, sem a dependéncia de softwares pagos. Assim, a solucao proposta almeja a

implementacdao de um modelo de simulacdo junto a um método de busca de solucdes.

Dessa forma, o modelo de simulag@o-otimizag¢ao proposto neste estudo serd implementado
em Python, por meio do qual serd possivel propor uma solu¢do em cédigo aberto para avaliar
os métodos de otimizagdo e busca a partir de indicadores de desempenho dos algoritmos (ex:
convergéncia e tempo de execucao) e indicadores desempenho do proprio problema (ex: custos

e nivel de servigo).

1.4 Relevancia

O presente Trabalho de Formatura traz contribui¢des para o estudo de controle de estoque
e pode ser adaptado e aplicado de forma préatica na inddstria. O problema apresentado na se¢cdo
1.2, com multiplos produtos e uma unica linha de producdo em lotes é semelhante a realidade
enfrentada pela industria de processos. Nesse tipo de industria, bens de consumo ou produtos
intermedidrios sdo produzidos por meio da transformagdo da matéria-prima via uma série de
processos fisicos, quimicos e bioldgicos, tipicamente com produgdes em batch. Alguns exem-

plos de produtos comumente produzidos por meio deste método sdo:

p—

. Produtos quimicos: resinas plasticas e revestimentos;

2. Produtos alimenticios: produtos de panificagdo, molhos, condimentos, bebidas alcodlicas

e nao alcodlicas, etc;
3. Produtos farmacéuticos: medicamentos;
4. Produtos cosméticos: lo¢Oes, cremes e outros produtos de beleza;
5. Tintas e revestimentos: tintas e revestimentos para fins decorativos e industriais;

6. Produtos téxteis: camisetas, calcas, vestidos, uniformes esportivos, etc.
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Devido a grande quantidade de setups dos equipamentos para a troca de produtos em linhas
de producdao como essas, percebe-se que ha um problema inerente a esse modo de producdo
relacionado a otimizac¢do do dimensionamento dos lotes de produgdo e ao sequenciamento dos
produtos nas maquinas. Dessa forma, diversas contramedidas sdo implementadas pelas empre-
sas de forma a minimizar custos e o tempo perdido com setup dos equipamentos € maximizar
o nivel de servi¢o, assim como evidenciado no trabalho de Tomotani e Mesquita (2017), que

realizaram um levantamento das praticas na industria.

Sobre a implementacdo em Python, em codigo aberto, do modelo de otimizacao-simulagao
proposto, apresenta-se um modelo customizado para a resolu¢do do SELSP, eliminando a de-
pendéncia de softwares genéricos e pagos ja existentes no mercado, tais como o AnyLogic
(simulac@o) e o OptQuest (otimizacdo). Esses softwares dificultam o acesso a solucdes com-
putacionais para o problema estudado e limitam a usabilidade de ferramentas para aprimorar a

busca de solucdes para o problema.

Dessa forma, o estudo em questdo contribui tanto para a melhoria dos métodos de con-
trole de estoque quanto para a disponibilizacdo de solu¢des computacionais para o problema

abordado.

1.5 Estrutura do trabalho

Este Trabalho de Formatura estd organizado nos seguintes capitulos:

1. Introducdo: Define o problema, os objetivos e a relevancia do estudo;

2. Fundamentagdo tedrica: Traz uma revisdo bibliogrifica abordando o controle de esto-
que, modelos de simulagdo-otimizac¢do e métodos numéricos de otimizacao aplicaveis ao

problema de Stochastic Economic Lot Scheduling Problem (SELSP);

3. Método: Apresenta o método de solucao empregado, as l6gicas dos modelos de simulagdo

e otimizacao para a resolucao do problema estudado;

4. Modelo de Simulacdo: Detalha os modelos conceitual e computacional de simulacao e

apresenta a validagdo e verificagdo desse modelo;

5. Modelo de Simula¢do-Otimizacdo: Apresenta em detalhes os métodos de busca imple-
mentados, seus experimentos de calibracio e suas implementagdes junto ao modelo de

simulacao;
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6. Planejamento dos Experimentos de Comparacdo: Traga o plano dos experimentos

7.

de comparacdo realizados, identificando os parametros a serem variados e as demais

varidveis do problema;

Discussdo dos Resultados: Discute os resultados obtidos com os experimentos de

comparacao realizados;

Conclusaes: Este ultimo capitulo traz um resumo dos principais resultados, as limita¢des

do estudo e discute perspectivas futuras de possiveis extensoes para o estudo.
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2  FUNDAMENTACAO TEORICA

Neste capitulo, apresenta-se uma revisao bibliografica, na qual foram explorados o tema de
controle de estoque de forma mais geral e, de forma mais profunda, os problemas de estoque
para multiplos produtos. Além disso, foram levantados os principais métodos de busca que

podem ser aplicados ao problema estudado.

2.1 Controle de estoque

Nesta se¢do, explora-se os principais conceitos relacionados ao controle de estoque, abor-
dando questdes de custo e politicas de controle, que sdo essenciais para a construcdo do modelo

de simulagdo proposto no Trabalho.

2.1.1 A importancia do controle de estoques

De forma geral, a maioria dos setores economicos lida com questdes ligadas a gestdao de
cadeias de suprimentos, de forma que o correto controle do fluxo de material é um fator im-
portante para a manutencdo de um bom relacionamento entre as empresas, seus fornecedores
e seus clientes. Sendo assim, o controle de estoque € parte relevante para as estratégias das
empresas, pois além de influenciar diretamente stakeholders externos a empresa, também tem

forte impacto em diversos setores internos.

E comum que se tenha a visdo de que os sistemas de controle de estoques tenham como
principal objetivo a gestdo de conflitos de interesse em uma fabrica. Se, por um lado, o setor
de financas tende a preferir que a fdbrica opere com estoques minimos para que mais capital
esteja disponivel para outros investimentos, o setor comercial, em sentido contrdrio, prefere
operacdes com grandes estoques para garantir entregas de pedidos de forma rapida e completa.
Ao mesmo tempo, o gerente de produgdo dard preferéncia a produgdo de grandes lotes para
evitar custos e paradas para a realizagdo de sefups nas maquinas, enquanto o setor comercial
prefere estoques com lotes menores para ter niveis de estoque equilibrados entre os produtos de

forma a aumentar o nivel de servico da empresa (AXSATER, 2015).

Em meio a esses conflitos e dada a importancia estratégica do assunto, as empresas rea-
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lizam grandes investimentos no setor de estoques, buscando a implementacao de ferramentas
de controle mais eficientes, de forma a reduzir seus custos € manter ou melhorar seu nivel de
servico (BARRY; JAY; CHUCK, 2017).

Além disso, a complexidade do assunto tém aumentado nas ultimas décadas, atraindo pes-
quisadores e empresas a criarem métodos modernos de controle de estoques por meio de mode-
los de decis@o complexos que aliam a experiéncia e a tecnologia, deixando de lado a aplicagdo
de regras de decisdo simples usados h4 décadas (AXSATER, 2015).

2.1.2 Custos de Estoque

Uma abordagem comum do controle de estoques € trabalhar com a minimizacao do custo
total. Nessa abordagem, diversos custos sdo considerados, mesmo que alguns nio se materiali-

zem em fluxos de caixa.

A seguir, serdo introduzidos os principais custos ligados ao problema de estoques, tais como
o custo de manutengdo do estoque (holding cost), custo de setup (setup cost) e custo de falta

(shortage cost).

2.1.2.1 Custo de manutencao do estoque (Holding cost)

A ideia do holding cost esta ligada, principalmente, ao custo de oportunidade de outros
investimentos, mas também considera outros fatores como custos de manuseio de cargas, de
armazenamento, de danos ao produto, de obsolescéncia e eventuais taxas. Em suma, todos os

custos varidveis devem ser englobados por essa categoria.

A posse de grandes estoques por uma empresa incorre em diferentes custos que oneram a
parte financeira da empresa e podem (ou ndao) aumentar a complexidade operacional, exigindo
maiores espacos, mais operadores e mais equipamentos, por exemplo. Além disso, o capital
investido para garantir a posse desse estoque poderia estar alocado em outros ativos, seja in-
vestimentos visando a um maior retorno financeiro ou mesmo ativos de maior liquidez para a
empresa (ex: caixa) (AXSATER, 2015).

Em geral, o custo de manutenc¢do € calculado de forma unitéria (por produto) e dentro de
espaco de tempo. Ainda, de forma a evitar o rateamento dos custos operacionais e simplifi-
car o célculo, esse valor é comumente relacionado a uma porcentagem do custo do material

armazenado.
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2.1.2.2 Custo de setup (Setup cost)

O reabastecimento dos estoques de produtos acabados ou de matéria-prima costuma estar
associado a um custo fixo, independente do tamanho do lote. A esse custo € dado o nome de

setup cost, que pode levar em conta a compra de materiais ou a producdo de itens.

Para esse custo sdo considerados fatores como custos de preparo e treinamento, custos
administrativos para gestdo de pedidos, custos associados a transporte e manuseio de carga,
tempo de setup, entre outros (AXSATER, 2015).

2.1.2.3 Custo de falta (Shortage cost)

Caso uma demanda ndo seja atendida devido a estoque insuficiente, o cliente tem duas
possiveis alternativas: deixar seu pedido como pendente e receber em completude assim que
possivel ou cancelar o pedido e escolher outro fornecedor. Em ambos os casos, diversos custos

sdo incorridos pela empresa fornecedora.

Um pedido pendente exigird, em geral, uma mobilizacao adicional da empresa fornecedora
que pode ser traduzida em descontos ao cliente, fretes mais rdpidos e mais caros, mao de obra
adicional (na operacdo e no administrativo) etc. Além disso, embora seja dificil mensurar, ha
um desgaste da relacdo com o cliente, que pode ser prejudicial para os negdcios da empresa
no longo termo. Evidentemente, caso o cliente opte por um outro fornecedor, a empresa deixa
de receber a remuneracdo pela venda do produto e o desgaste com o cliente é ainda maior
(AXSATER, 2015).

Para o setor de producdo, a falta de materiais e componentes pode gerar ociosidade de linhas

de producao e atrasos, sendo necessario reorganizar as ordens de producao.

A dificuldade de precisar o custo associado a ruptura de estoques faz com que seja comum

a associac¢do desse custo a niveis minimos de servigo da fébrica.

2.1.3 Politicas de revisao de estoque

Os modelos de controle de estoque podem ser classificados em duas grandes classes: re-

visdo continua e periddica.

O modelo de revisdo continua estabelece uma politica de acompanhamento continuo da
posicdo do estoque. Assim, logo que o nivel de estoque atinge o nivel de reposi¢ao, s, um

pedido de tamanho fixo () é feito, conforme representado na Figura 2 (AXSATER, 2015).
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Note que o o ponto de reabastecimento, deve levar em consideragdo fatores como o lead

time de entrega do fornecedor, L, e outros fatores ligados a variagao da demanda.

Esse modelo de revisdo apresenta como vantagem a possibilidade de trabalhar com estoque
de seguranga, S5, reduzido quando comparado a modelos de revisdo periédica (AXSATER,
2015).

Figura 2: Representacao da politica de revisdo continua.
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Fonte: Elaborado pelo autor.

Ainda, além da politica de revisdo de estoques continua, podem ser estabelecidas politicas

de reabastecimento de estoques, tais como a politica (R, Q) e a (s, S).

A politica (R, Q) estabelece um ponto de reabastecimento 2 ¢ um tamanho de lote ), de

forma que assim que o estoque atinge uma posi¢ao R, um lote de tamanho () é produzido.

Note que em um sistema com reabastecimento (R, Q), em geral, o pedido pelo material
ocorrerd quando a posi¢do do estoque ja estd abaixo do nivel R, fazendo com que o estoque nao
atinja o valor de R + (Q (AXSATER, 2015).

A politica de reabastecimento (s, S) € similar a politica (R, Q) e também estabelece um
ponto de reabastecimento, aqui denominado como s, que ativa o pedido por um novo lote.
Porém, nesse modelo, o lote pedido tem tamanho varidvel e ¢ determinado pela quantidade

necessdria para que se atinja o nivel de estoque maximo S (order-up-to) (AXSATER, 2015).

Dando continuidade as politicas de revisdo de estoque, a outra grande classe € o modelo de

revisdo periddica. Esse modelo estabelece uma politica de acompanhamento com verificacdes
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periddicas da posi¢ao do estoque em intervalos fixos de tempo 7'. Assim, a cada periodo 7', o
nivel de estoque € verificado e um pedido de tamanho variado @); € feito, de forma a restabelecer

o estoque até seu nivel mdximo .S, conforme ilustrado na Figura 3 (AXSATER, 2015).

Nesse modelo de revisdo € preciso estabelecer niveis de estoques de seguranca maiores do
que no modelo de revisdo periddica. Porém, uma das principais vantagens desse modelo de
revisdo € a escalabilidade do sistema de controle de estoque, uma vez que ele reduz de forma
considerdvel o custo com inspecdes da posicao do estoque, o que permite 0 acompanhamento
de muiltiplos itens de forma mais pratica (AXSATER, 2015).

Figura 3: Representacao da politica de revisao periddica.
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Fonte: Elaborado pelo autor.

2.2 Problemas de dimensionamento de lotes

Esta secdo dedica-se a definicao e andlise de problemas de estoque, além de levantar os prin-
cipais métodos que t€m sido utilizados para a resolu¢dao do problema de Stochastic Economic
Lot Scheduling Problem (SELSP).
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2.2.1 Problema classico do Lote economico de compra

O modelo mais antigo (e simples), ligado ao problema de controle de estoque € o problema
do Lote Econdmico de Compra, também conhecido como Economic Order Quantity (EOQ).
Esse modelo foi aplicado inicialmente em meados de 1913, por Ford W. Harris, para o dimen-
sionamento de lotes de producao (HOPP; SPEARMAN, 2011).

O modelo proposto traz diversas simplificagdes, que muitas vezes ndo siao aplicdveis de
forma pratica, mas que permitem que seja possivel descrever de forma analitica o tamanho do

lote de compra de um produto.

Para o modelo EOQ, assume-se que (HOPP; SPEARMAN, 2011):

1. A producdo ocorre de forma instantdnea e ndo ha limitacdes de capacidade para a

producdo do lote completo;

2. A entrega do pedido ocorre de forma imediata, ndo havendo intervalo de tempo entre a

producdo e a entrega do produto para satisfazer a demanda;

3. A demanda é deterministica, desprezando quaisquer incertezas em relacdo aos tamanhos

dos pedidos e seu intervalo de ocorréncia;
4. A demanda € constante durante todo o periodo;

5. O inicio da produgdo incorre em um custo fixo de setup, independentemente do tamanho

do lote (de produgao);

6. Os produtos sdo analisados de forma independente, assim, deve-se considerar a existéncia
de apenas um produto ou assume-se que nao ha compartilhamento de recursos, como

maquinas e operadores, entre os produtos.

Para computar o tamanho 6timo do lote, )*, é necessario o conhecimento das seguintes

variaveis do problema:

D = A taxa de demanda (un./periodo)
¢ = O custo unitario de producgdo (R$/un.)
A = O custo fixo de pedido/setup do lote (R$)

h = O custo unitario de manuten¢ao do estoque
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Assim, diante das simplificagdes mencionadas e adotando a notagdo indicada acima, pode-

se tracar a evolucao do nivel de estoque conforme mostrado na Figura 4.
Figura 4: Evolucao do nivel de estoque para o modelo EOQ.
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Fonte: Adaptado de Hopp e Spearman (2011).

A linearidade e a natureza determinada do problema permitem descrever de forma analitica
a funcdo de custo para o problema. Assim, para um dado periodo, pode-se deduzir o custo total,
Y, da seguinte forma (HOPP; SPEARMAN, 2011):

Y(Q) = % + ’%D + ¢D 2.1)
~— ~— ~—

Custo de manuteng¢do do estoque  Custo de setup ~ Custo de producdo

A equagdo 2.1 permite tragar as curvas para o custo total de estoque, assim como para cada
componente do custo, como mostrado na Figura 5. Pelo grafico, € possivel notar que ha um
trade-off entre o custo de setup e o custo de manutencdo do estoque e, conforme aumenta-se o
tamanho do lote, o custo de manutencao fica cada vez mais predominante no custo unitario de

estoque do produto.

Além disso, por meio da equacdo 2.1, é possivel derivar a cldssica férmula para o tamanho

ideal do lote, )*, a0 minimizar-se o custo total de estoque:

. [2AD
Q* = — 2.2)

Duas premissas importantes limitam o modelo proposto por Harris: 1) a existéncia de um
unico produto e 2) a demanda constante. Essas hipdteses simplificadores, em muitos casos,

comprometem a aplicagdo da formula 2.2 no contexto real das industrias.
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Figura 5: Exemplo de curvas de custos unitarios para o modelo EOQ.
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Fonte: Adaptado de Hopp e Spearman (2011).

Todavia esse cldssico modelo trouxe importantes nogoes sobre o trade-off entre o custo de
setup e o custo de manutencao de estoque, assim como o trade-off entre o tamanho de lote de
producgdo (ou compra) e o tamanho do inventario (HOPP; SPEARMAN, 2011).

Nesse contexto, os avancos no estudo de controle de estoques permitiram o surgimento de
novos modelos que permitem o relaxamento de algumas das premissas adotadas pelo modelo

EOQ, como sera visto a seguir.

2.2.2 Re-Order Point (ROP) model

Dando continuidade ao problema estabelecido pelo modelo EOQ, o modelo ROP também
considera o controle de um tnico item, porém, alternativamente, relaxa-se a premissa de que a

demanda do produto é constante.

Assim, para o modelo ROP, sdo assumidas as seguintes premissas (NAHMIAS; OLSEN,
2015):

1. A demanda é aleatoria e estaciondria, ou seja, embora ndo seja possivel determinar a
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demanda exata para cada periodo, € possivel ter conhecimento da esperanca do valor da

demanda para certo periodo de tempo;
2. Rupturas de estoque sdo permitidas, podendo haver perda de venda ou atraso no pedido;

3. Considera-se um unico item e assume-se que as demais premissas sao compativeis com
o modelo EOQ.

A preocupacgdo do modelo passa entdo a ser a determinacdo de duas varidveis de decisdo in-
dependentes: a do estoque minimo para a realizacdo do pedido do lote para que as incertezas da
demanda sejam absorvidas; e o tamanho do lote a ser produzido/pedido (HOPP; SPEARMAN,
2011).

Adicionalmente, é possivel segmentar o modelo ROP em outros 2 modelos (HOPP; SPE-
ARMAN, 2011):

* Base stock model: Nesse modelo, o estoque é reabastecido com uma unidade por vez,
conforme a demanda ocorre, e o problema a ser resolvido € a determinacdo do ponto de

reabastecimento.

* (R, Q) model: Nesse modelo, considera-se uma politica de acompanhamento de estoque
continuo, de forma que quando o estoque atinge um nivel R, um lote de tamanho @) é
solicitado. Em seguida, apds certo periodo de tempo [, durante o qual rupturas de estoque
podem ocorrer, o lote € recebido. Assim, o problema a ser solucionado € a determinagdo

dos parametros R e ().

2.2.3 Economic Lot Scheduling Problem (ELSP)

Talvez uma das simplificacdes mais limitantes do modelo EOQ seja considerar apenas um
tipo de produto ou, caso existam multiplos produtos, cada SKU pode ser analisado de forma

independente, uma vez que nio compartilham recursos na fabrica (AXSATER, 2015).

Extensamente estudado na literatura, o Economic Lot Scheduling Problem (ELSP) re-
laxa essa premissa e busca determinar programacdes ciclicas para sistemas de produ¢do com

multiplos itens de demandas constantes, que compartilham um mesmo recurso.

Nesse problema, busca-se ndo apenas determinar quanto deve ser produzido de cada pro-

duto, mas também quando cada um dos itens deve ter sua producao iniciada.
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Sendo assim, no ELSP, tem-se o interesse em programar a producdo de multiplos produtos
em uma Unica maquina de forma a minimizar os custos de estoque, tais como os custos de setup

e de manutencdo do estoque.

Assim como feito para o0 modelo EOQ, listam-se abaixo as principais premissas do ELSP
(LARRANETA; ONIEVA, 1988):

1. Ha apenas um recurso disponivel;
2. Um tnico produto pode ser produzido por vez;
3. Os custos e tempos de sefup sao constantes e podem ser particulares para cada produto;

4. As taxas de producdo sdo conhecidas e constantes, podendo ser particulares para cada

produto;

5. As demandas s3o conhecidas e constantes, podendo ser particulares para cada produto.

Dessa forma, tendo em vista as hipoteses acima e assumindo as restricdes de que nao ha
ruptura de estoque e de que toda a demanda é atendida, assume-se que o tamanho das batches
para cada produto e os tempos de ciclos sdao mantidos constantes. Além disso, esses fatores
dependem dos parametros de estoque e das politicas de acompanhamento de estoque adotados

pela fabrica.

Ainda, ressalta-se o fato de que o Economic Lot Scheduling Problem pode ser modelado
com programacdo matematica e € conhecido como um problema NP-hard (CHUNG; CHAN,
2012), ou seja, ainda ndo € possivel encontrar um solucdo 6tima para o problema em tempo po-
linomial. Essa dificuldade impde limites computacionais para a resolu¢do do problema, levando

a busca de solugdes aproximadas por meio da utilizagao de heuristicas.

2.2.4 Stochastic Economic Lot Scheduling Problem (SELSP)

Naturalmente, o Stochastic Economic Lot Scheduling Problem (SELSP) € uma varia¢do do
ELSP, no qual incertezas sao adicionadas ao problema por meio de fatores estocdsticos que po-
dem estar relacionados as demandas, tempos de ciclo, tempos de setup ou alguma combinacgdo

desses fatores.

Dessa vez, o interesse € de calibrar os valores dos parametros de estoque e a programagao

dos N produtos que compartilham a utilizagdo da unica maquina disponivel.
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A incerteza adicionada ao problema em relacdo a demanda e aos tempos de processa-
mento aumenta significativamente a complexidade da programac¢ao matemadtica, uma vez que
a determinagdo da quantidade a ser produzida por cada produto e a sequéncia de producdo
dos itens deixam de ser fixas. Sendo assim, € necessdrio estabelecer politicas de estoque para
definir priorizacdes e quantidades a serem produzidas para garantir niveis de servico e custos
satisfatérios (AXSATER, 2015).

Embora esse dinamismo implique em um aumento de complexidade, o problema represen-
tado pelo SELSP € muito proximo da realidade enfrentada por varias empresas, principalmente
para a industria de processos. Ainda, a resolu¢do do SELSP depende da formulagdo proposta ao
problema, que pode ser orientada a definicdo de sequenciamentos de produtos ou a calibragdo

de parametros de estoque.

No presente estudo, adota-se a segunda abordagem, usando a ideia de ponto de pedido para

reposicdo de estoque e voltando esfor¢os para a calibragdo dos parametros de estoque (s, .5).

De toda forma, a busca por métodos eficientes que atinjam bons resultados (i.e. métodos
que escolham bons valores para s e S, por exemplo) para a resolugdo do SELSP € impor-
tante para integrar os estudos da literatura com os problemas reais de controle de estoques
enfrentados pelas empresas. Esses esforcos permitem que as empresas possam tomar decisoes

informadas/embasadas sobre sua producgdo e politicas de estoque.

2.3 Algoritmos de busca

Nesta se¢do, apresentam-se alguns algoritmos de busca de minimos que podem ser usados

na busca de solugdes para otimizacdo dos parametros do problema definido no capitulo 1.

2.3.1 Busca exaustiva

O método de busca exaustiva, também conhecida no literatura como método de “forca
bruta”, € uma das abordagens mais simples e genéricas para a busca de solu¢cdes em proble-
mas de otimizacdo (HAUPT; HAUPT, 2004). Note, porém, que esse método € aplicavel em
problemas cujo espago de solucdes € enumerdavel. Dessa forma, para problemas em espacos
continuos, € preciso discretizar o espaco criando malhas discretas com intervalos suficiente-

mente pequenos.

Nesse método, todos os possiveis candidatos do espago de solugdes sao testados e avaliados

para determinar-se a melhor solu¢do, como ilustrado pelo Algoritmo 1.
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Algoritmo 1 Busca exaustiva

1: funcdo BUSCA EXAUSTIVA(S) > Onde S € o conjunto de todas as solu¢des candidatas

2: Spest < None > Melhor solucdo
3: Jrest < 00 > Custo da melhor solugao
4: Para cada s em S faca
5: fs < AVALIAR(s) > Calcula o custo para o candidato s
6: Se fs < frest Entao
1 Joest < fs
8: Spest < S
9: Fim Se

10: Fim Para

11: Imprima sy, foes

12: Fim funcao

Embora seja facilmente implementada e garanta a identificacdo da solugdo-6tima, caso
exista, a busca exaustiva € custosa em tempo e poder computacional. Note que para problemas
complexos o nimero de solugdes candidatas cresce exponencialmente conforme o tamanho do

problema aumenta, tornando a busca por for¢a bruta dificil de ser praticada.

Assim, seja N, 0 nimero de varidveis e (); os possiveis valores assumidos pela varidvel
1, 0 nimero de combinagdes possiveis, N.,,», a serem avaliadas € dado por (HAUPT; HAUPT,
2004):

Nva’r

Neoms = | [ @ (2.3)
i=1

Note ainda que em alguns casos € possivel estabelecer um subconjunto do espaco de
solucdes, onde acredita-se que a solugdo Otima possa ser encontrada, de forma a diminuir o
nimero de solucdes avaliadas. Porém, essa estratégia ndo garante que a solucdo encontrada

seja um minimo global, sendo, portanto, um possivel minimo local.
Para exemplificar esse fato, toma-se o exemplo da fungdo seguinte fungdo f : (R,R) — R:

fla,y)=3-(1—2)" e W) _qp. (f —a —yf) e Y — —(z+1)%—y?

5 ¢

W

Tendo em vista que f é uma fungdo continua definida sobre todo o plano (R, R), é possivel
definir uma malha para o plano (X,y) com intervalos de 0,1 entre dois pontos consecutivos em

uma mesma dire¢o e limitados ao intervalo de [—5, 5]. A malha construida é formada por 1012
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pontos, todos possiveis candidatos a um minimo global que estdo representados na Figura 6.

Figura 6: Representacdo da curva f.

fix, y)
M
o ~ S o o

°
(K x)y

Fonte: Elaborado pelo autor.

A andlise grafica da funcdo permite a identificacdo de dois pontos criticos de minimo. O
primeiro deles, com coordenadas préximas a (-1,35; 0,20), € um minimo local e o segundo,
de coordenadas (0,23; -1,63) aproximadamente, ¢ um minimo global. Ambos os pontos sao

representados no grafico de contorno da fun¢do f na Figura 7.

Assim, caso um subconjunto a ser explorado fosse definido apenas para o semi-plano 5 tal
que S; : {(z,y) | y > 0}, o minimo encontrado pela busca exaustiva seria um minimo local,

apesar de reduzir pela metade o tempo de execucdo do algoritmo.

Portanto, o método busca por forca bruta é propicio apenas para problemas pequenos, com
um ndmero pequenos de varidveis e cujos intervalos de possiveis valores sdo limitados a um
espaco pequeno. Além disso, busca por forga bruta € interessante em casos nos quais a facili-

dade de implementacao do método de busca € mais relevante do que a eficiéncia do método.



35

Figura 7: Representacdo do contorno de f.

Grafico de contorno
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Fonte: Elaborado pelo autor.

2.3.2 Nelder-Mead

Introduzido em 1965 pelos estatisticos John Ashworth Nelder e Roger Mead, o algoritmo
de busca Nelder-Mead, também conhecido na literatura como Downhill Simplex Method, é um
método de busca heuristico que dispensa a necessidade de calculos de derivadas. Essa carac-
teristica o torna atrativo para implementacdo em problemas em que ndo € possivel descrever de

forma analitica a funcdo objetivo do problema (HAUPT; HAUPT, 2004).

Apesar do nome, o algoritmo nio € relacionado com o método Simplex, mas mantém a ideia
de construir um simplex a cada iteragdo. Assim, uma forma geométrica elementar formada em
N dimensdes e possuindo N + 1 lados (ou vértices) € produzida para cada iteragdo, como um

triangulo em um problema de duas dimensdes.

O objetivo do método é de mover o simplex até a regido do minimo buscado e, entao,
contrair o simplex em torno do minimo até que atinja-se a tolerancia do erro pré-estabelecida
(HAUPT; HAUPT, 2004).
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O método de busca € iniciado com um conjunto de N + 1 pontos que formam o simplex
inicial, de forma que apenas um dos pontos, F, é especificado pelo usuério, sendo os outros

pontos determinados pela seguinte equacao (HAUPT; HAUPT, 2004):
P,=F +c-e, 2.4
Onde:

P, : Ponto n do simplex inicial WV n, n =1,2,..., N)
¢s - Constante de escala

e, : Vetor unitario de dimensao N na dire¢do n

Além disso, define-se os seguintes parametros (JIN et al., 2019):

« : Fator de Reflexdo (tipicamente o = 1)
B : Fator de Expansdo (tipicamente 5 = 2)

1
v : Fator de Contragdo (tipicamente v = 5)

1
p : Fator de Encolhimento (tipicamente p = 5)

Para exemplificar o funcionamento do método, toma-se novamente o problema de duas di-
mensdes. Assim, inicia-se a busca com a cria¢@o de tridngulo inicial de vértices P4 = (x4, Yy4),

Py = (2p,yp) € Po = (z¢,yc) (Figura 8), com o qual, inicialmente, ordena-se os custos em

ordem crescente para cada vértice:
f(Pg) < f(Fo) < f(Pa)

Para cada iteracdo, define-se os indices h, s, [ para os vértices de pior, segundo pior e

melhor custo, respectivamente, para o simplex de trabalho atual:

Py | fn = mazx; f;
P | fs = maxjzp f;

Byl fi = mingzn f;

Assim:

f(Pp) < f(Pe) < f(Pa) & f(R) < f(P) < f(P))
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Em seguida, ocorre a etapa de Reflexdo, em que um novo ponto Pp = (xp, yp) € definido
como uma reflexdo do ponto com o maior custo, P, (considerado como o ponto P4 nesse
exemplo), em relag@o ao centroide, P; = (xy,y;), formado pelos pontos restantes (Pp e Pr),

conforme ilustrado na Figura 8.

izl
P[:%, N=2 (2.5)
Pp =P +a(P— P) (2.6)

Figura 8: Representacdo de uma iteracdo do Algoritmo de Nelder-Mead para um problema de
duas dimensdes

o E

Fonte: Haupt e Haupt (2004).

Caso o custo do ponto Pp seja tal que:

i < f(Pp) < fs& f(Pg) < f(Pp) < f(Pe),

substitui-se o ponto de maior custo, P, (i.e. P4 no exemplo) pelo ponto Pp para formar-se um

novo simplex e uma nova iteracao € iniciada.

Em seguida, caso o custo de Pp seja menor do que de P4 (ou seja, o melhor custo até o
momento: f(Pp) < f;), entdo é preciso fazer uma Expansdo. O ponto de Expansdo, Pg =

(g, yr), € tal que:

Pg =P+ B(Pp — Pp) 2.7)

Caso o custo do ponto Pg seja menor do que do ponto Pp (i.e. f(Pg) < f(Pp)) , obtém-
se um novo simplex substituindo o ponto de pior custo, P, (i.e. P4), pelo ponto expandido

Pr e inicia-se uma nova iteracdo. Caso o custo de Pp seja maior ou igual do ponto Pp (i.e.
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f(Pp) < f(Pg)), o novo simplex é obtido ao fazer a substituicdo descrita anteriormente pelo

ponto refletido Pp.

Porém, caso o custo de Pp seja maior ou igual ao segundo pior custo, fs (i.e. f(Pp) > fs),

realiza-se uma Contragdo. Dois pontos de Contracgdo sdo estabelecidos, Pr = (zp,yr) € Pg =

(xg,ya), tais que:

Pg = Pr+~(P,— Fr) (2.9)

Apenas o ponto de menor custo entre os pontos /' e G € mantido. Caso o ponto escolhido
tenha custo menor do que o pior custo encontrado (i.e. f(Proug) < fr), substitui-se o ponto

de pior custo, P, (i.e. P4) pelo ponto escolhido. Caso contrario, realiza-se um Encolhimento.

No processo de Encolhimento, todos os pontos, exceto o de melhor custo, F}, sdo subs-
tituidos e o simplex sofre um Encolhimento na dire¢do deste ponto (i.e. Pp para o exemplo).

Seja P, = (x,,4p) o ponto encolhido do ponto P,, entio os N novos pontos sio tais que:
P, =P+ p(P;— P),¥j=1,2,..,N com j # | (2.10)

Caso o novo simplex formado nao atinja os critérios de término do algoritmo (em geral
definido como um tamanho minimo para o simplex), uma nova iteracio € realizada. A solugdo
proposta como solu¢@o 6tima € representada pelo ponto de menor custo no ultimo simplex

formado.

Os processos de Reflexdao, Expansao, Contragdao e Encolhimento descritos acima podem ser
observados se forma mais clara na Figura 9. Ainda, um exemplo ilustrativo do funcionamento

do algoritmo € representado na Figura 10.
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Figura 9: Representacao dos processos de Reflexdo, Expansao, Contra¢do e Encolhimento do
algoritmo de Nelder-Mead para um problema de duas dimensdes.

contract

Fonte: Adaptado de Cheng e Mailund (2015).

Figura 10: Exemplo de aplicac@o do algoritmo de Nelder-Mead.
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Fonte: Haupt e Haupt (2004).

O algoritmo de Nelder-Mead nao é conhecido por sua velocidade, mas sua robustez o torna
atrativo para que seja implementado. Porém, ressalta-se o fato de que o método estd exposto
ao risco de ficar preso em minimos locais, o que faz necessario a combina¢cdo do método com

outros métodos de busca aleatdria para diminuir esse risco (HAUPT; HAUPT, 2004).
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2.3.3 Genetic Algorithm

O método de busca de Algoritmo Genético (Genetic Algorithm - GA) € uma metaheuristica
para otimizacdo combinatdria que foi desenvolvida pelo pesquisador John Holland em 1975 e
¢ inspirada nos principios de genética, sele¢dao natural, mutacio e cruzamento. Nesse método,
uma populacgdo de individuos evolui sob certas restricdes e apenas os individuos que melhor se
adaptam ao problema (i.e. apresentam o menor custo), t€m seus genes propagados nas proximas
geracdes (HAUPT; HAUPT, 2004).

O algoritmo genético, assim como o algoritmo de Nelder-Mead, ¢ um método de otimizagao
que dispensa a necessidade de célculos de derivadas da fungdo objetivo, além de poder ser
aplicado tanto para otimizacao de varidveis continuas como discretas. Porém, uma desvantagem
comum desse algoritmo € o maior tempo necessario para atingir resultados satisfatérios quando
comparado a outros métodos de busca mais tradicionais, embora o Algoritmo Genético possa
ser aplicado em problemas nos quais esses outros métodos s@o incapazes de encontrar solugoes
(HAUPT; HAUPT, 2004).

A cada iteracdo do algoritmo (também conhecido como gera¢do), um conjunto de in-
dividuos (a populacdo) tem seus niveis de “adequacdo” ao problema (i.e. seus custos) com-
putados a partir da configuragao de genes particular de cada individuo (aqui denominado como

0 Cromossomo).

Cada individuo representa um candidato a solucdo do problema e seu cromossomo ¢é defi-

nido por um vetor 1 X N, no qual N, € o numero de varidveis do problema:

Cromossomo = [r1,xs, ..., TN,,, ]

Custo = f(Cromossomo) = f(x1,xg,...,TnN,,.) (2.11)

O algoritmo € iniciado com uma populagdo inicial de N,,, individuos representada por
uma matriz Np,, X Nyq.. Em geral, a populagao inicial € definida de forma aleatéria com base
nas restricoes de valores de cada varidvel. Assim, seja j um gene (uma varidvel) qualquer do

problema:

Ljk,0 = (uj - lj) * Prorm + lj (2.12)
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Zj o : Valor inicial do gene j para o individuo k
: Valor médximo para a varidvel j
[; : Valor minimo para a varidvel j

Prorm - NUmero aleatorio entre 0 e 1

Com a populagdo definida, os custos de cada individuo s@o computados e ordenados. A
defini¢do da proxima geracdo de individuos passa por um processo de Selecdo natural para
que apenas os cromossomos mais adaptados possam sobreviver e gerar descendentes. Assim,
para cada geracao, Njc., individuos sobrevivem (Nyeep, < N,op) € seguem para a etapa de

acasalamento, enquanto o restante ¢ descartado.

A decisdo de quantos individuos de cada geracdo devem ser mantidos € arbitraria. Permitir
poucos individuos sobrevivam limita a disponibilidade de genes para os descendentes, enquanto
um ndmero grande de individuos sobreviventes permite que genes com performance baixas
sejam propagados. E comum que a taxa de selecdo de individuos seja préxima a 50% (HAUPT;
HAUPT, 2004).

Os individuos que sobreviveram sdo agrupados em pares de forma aleatdria para que pos-
sam gerar descendentes. Note que a formacdo desses pares pode ocorrer de outras formas,
como por exemplo fazendo priorizagdes a partir dos custos. Cada par de pai e mae gera pelo
menos um descendente (em geral, cada casal produz 2 filhos) e o processo € repetido até que

Npop — Nieep filhos sejam gerados.

Durante a etapa de acasalamento, a geracdo dos filhos depende dos genes dos pais que
geraram o descendente. Diferentes abordagens podem ser tomadas para definir a combinacgado

dos cromossomos dos pais.

Uma das abordagens mais simples € a escolha aleatdria de alguns genes (pontos de acasa-

lamento) para serem trocados entre os pais. Assim, um exemplo de acasalamento €:

Pai = [xl,pa L2,ps L3,py Td,py -+ xNvmvP]
Mae = [1,n;, T2.m;s T3.ms Tams o) TNygr,m]
FZlhOl = [l‘Lm, ':1727]7’ $37m, $47m7 ceey IENvahp]

Filhoy = [T1p, T2.ms T3, T ps -y TNy ,m]

Outra possivel abordagem €, para cada gene, a escolha aleatdria de qual dos pais ird passar
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seu material genético ao filho.

O problema das abordagens mencionadas acima € que elas ndo adicionam informagdes
novas a prole, sendo realizadas apenas diferentes combinagdes entre os genes. Para remediar
esse problema, sao sugeridos alguns métodos de mistura (blending methods) que contam com a

ideia de mutacdes para adicionar novos materiais genéticos a populacgao.

Assim, seja 7 um gene (uma variavel) para um descendente:

TFitho; = BTpaij + (1 — B)Znrae, (2.13)

Onde:

Trilho,j - Valor do gene j do descendente
T pqi; : Valor do gene j do Pai
T Mae,; - Valor do gene j da Mae

{3 : Fator de contribui¢do € [0, 1]

Dessa forma, o gene do filho passa a ser uma combinagdo linear dos genes de seus ge-
radores. A selecdo de quantas e quais varidveis devem ser misturadas € arbitrdria e fica a
critério do usudrio. Além disso, os valores de 5 podem ser particulares para cada gene (i.e.
Bj, Vj=1,2,..., Ny,), mas em geral costuma-se adotar o valor de 3 = 0, 5 (HAUPT; HAUPT,
2004).

Além da propria mistura dos genes dos pais, o Algoritmo Genético considera a possibili-
dade de mutacdes na populacdo, um recurso importante para que seja evitado que a populagdo
convirja para minimos locais, sem que consiga sair. Em geral, define-se uma taxa de mutagdo,
T, cujo valor costuma ser estabelecido em 20% (HAUPT; HAUPT, 2004). Assim, com essa
taxa, 20% dos genes (Np, X Nyqr) €stdo sujeitos a mutagdes. Note que € comum que seja ado-
tada uma pratica de “elitismo”, na qual os N.;;;. melhores cromossomos ndo sao submetidos a

mutagdes, fazendo com que o nimero total de genes modificados seja:

NMutagf)es = (Npop - Nelite) X Nvar (214)

O processo descrito acima € repetido até que se atinja o critério de parada do algoritmo,
como a taxa de variacdo entre as geracdes, tempo de execugdo do cddigo, uma solugdo consi-

derada satisfatoria, etc.
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2.3.4 Ant-Colony

O algoritmo de otimizacdo Ant Colony (Ant Colony Optimization - ACO) € uma me-
taheuristica populacional inspirada na comunicacdo entre formigas com o uso de feromonios.
Esse método de busca foi introduzido por Marco Dorigo em 1992 para resolugdo do traveling
salesman problem (TSP), quando pdde mostrar seu valor na resolucdo de problemas combi-
natorios (CHENG; MAILUND, 2015).

A ideia por tras do algoritmo é de usar o principio de rastro de feromonios deixados pelas
formigas pelos caminhos percorridos por elas, que na natureza sao um indicativo para que outras
formigas possam seguir o mesmo caminho e cheguem até o alimento buscado. Naturalmente, as
formigas optam por caminhos mais curtos (de menor custo) para que possam atingir o objetivo
da colonia, como a busca por alimentos, e quanto mais formigas percorrem 0 mesmo percurso,
uma quantidade maior de feromonios € deixada no trajeto, levando a uma eventual convergéncia
na movimenta¢do da colonia (CHENG; MAILUND, 2015).

Figura 11: Representacdo de um problema de otimizacdo em grafo, onde cada camada
representa os possiveis valores de uma certa varidvel.

Init
Var 1 a b C d
Var 2 nl n2 n3
Var 3 256 1024
Var 4 256 1024
Var 5 256 1024
Var 6 256 272 1024
Var 7 4 5 32
Var 8 128 129 256

Fonte: Elaborado pelo autor.

Esse mesmo principio € usado pelo ACO, em que as formigas de cada geracao percorrem

um grafo no qual, para cada nivel de camada, escolhem um valor para a varidvel do problema
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representada pela camada, como ilustrado na Figura 11.

Semelhante ao Algoritmo Genético, cada iteracdo do ACO € formada por uma populagio
de agentes de tamanho N,,, €, ao final de cada itera¢do, apenas as melhores formigas sdo

recompensadas.

Inicialmente, todos os caminhos do grafo que representa o problema possuem uma quanti-
dade de feromonio 7y. A escolha de um caminho por uma formiga € probabilistica e depende
da quantidade de feromonios existente no percurso. Assim, seja ¢ um né de origem e j um nd
de destino, entdo, a probabilidade de que a formiga escolha o né j como seu proximo destino

entre N possiveis caminhos € dada por:

o, B
Ti ',

_— (2.15)
ijﬂ Tffk”fk

Dij =

Onde:

7;; : Quantidade de feromdnios entre os nés ¢ e j
1;,; - Visibilidade entre os nés ¢ e j
« : Fator de influéncia da quantidade de feromodnios para a escolha do caminho

G : Fator de influéncia da visibilidade para a escolha do caminho

Note que a ideia de visibilidade entre nds, representada por 77, € um indicativo da “distancia”
existente entre os nds, o que pode ser um parametro ttil para alguns problemas como o TSP.
Ainda, pela equagdo acima, pode-se perceber que a probabilidade de escolha de um caminho é

dependente da quantidade total de feromonios existentes na mesma camada.

Para uma dada gerag@o, apos todas as NV, formigas escolherem seus caminhos, o custo de
cada solucdo (i.e. cada caminho escolhido por cada formiga) é computado e as formigas sdo
ranqueadas de acordo com esse custo. Em seguida, a quantidade de feromonios € atualizada e
depende da taxa de evaporacdo de feromonios, p, ou seja, a quantidade de feromdnios que deixa
os caminhos a cada itera¢do; e da quantidade () adicionada a cada caminho percorrido por cada

formiga. Assim, para dado caminho entre os nds ¢ € j, tem-se que:

Npop
e (L—p) -l + > ATk (2.16)
k=1

J
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A (), se aformiga k passou pejo caminho ij
T. . =

Z?]
0, caso contrario

Algumas variacdes do ACO sdo propostas na literatura e utilizam outros métodos para

atualizar a quantidade de feromonios a cada itera¢do, como:

» Sistema elitista: Apenas as /V.;;;. melhores formigas encontradas até o momento adicio-

nam feromonios, garantindo que bons caminhos ndo sejam perdidos;

e Sistema Max-min: A quantidade de feromonios em cada caminho € limitada por um
limite médximo e minimo, o que limita a intensificacio de caminhos pelas formigas e

promove maior diversificagdo na escolha dos percursos;

» Sistema ASRank: Com base no ranqueamento de custos das solugdes, as formigas que
apresentam resultados melhores desempenhos adicionam mais feromo6nios quando com-

parado a formigas com performances piores.

O processo descrito acima € repetido até que se atinja o critério de parada do algoritmo.

2.4 Resolucao do SELSP

2.4.1 Revisao da literatura

Ao analisar-se os materiais da literatura ja publicados para o Stochastic Economic Lot Sche-
duling Problem, pode-se encontrar o trabalho de Wagner e Smits (2004) em que o controle de
estoques foi analisado diante do cenario do SELSP considerando um sistema de producao com
uma politica de revisdo de estoque periddica (R, S), focando na definicdo de sequenciamentos

otimos.

A cada vez que o estoque € revisado, uma ordem de producdo é emitida para o produto
revisado e a frequéncia de revisdo é dada pelo tempo de ciclo de cada produto. O objetivo da
otimizagao é determinar um sequenciamento de producao fixo que poderd ser repetido inde-
finidamente e que minimize os custos de sefup e estocagem no longo prazo. Mesmo que os
fatores estocasticos tragam incertezas ao sistema e gerem “atrasos” em relac@o ao que foi pla-
nejado, a sequéncia estabelecida é mantida e sdao ajustados os valores dos lotes de producao,

como mostrado na Figura 12.

O método de busca proposto pelos autores € um método de busca local baseado no método

de Simulated Annealing, tendo como palpite inicial uma solu¢do baseada no periodo bdsico de
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producgdo de cada produto. Assim, os ciclos de producdo de cada produto sdao mantidos como
multiplos de seus periodos bdsicos. A solucdo proposta pelo método de busca local tem sua

viabilidade verificada na sequéncia e o custo da solu¢do é computado.

Mais uma vez, a metodologia de busca adotada é dependente da solugao inicial proposta
e a possibilidade de busca de solucdes que fujam do padrdo estabelecido pela solugdo inicial

depende da configuracdo dos hiperparametros do algoritmo do Simulated Annealing.

Figura 12: Sequenciamento estatico proposto por Wagner e Smits (2004).

Uy setup time
PG \L N idle time cyclic production schedule Q
lanning level
() = 1 5 3 ) ) 4 (planning level)
<— production order for item 4
e v AVAV, A4 4 v 7w B
4 1 2 3 1 2 4 1
- = ey
—————
Wi Okl Py + Sui) control level
—_—

lead time Lj

V__Vv waiting time

Fonte: Wagner e Smits (2004).

Paternina-Arboleda e Das (2005) adotam uma outra estratégia para a resolu¢ao do SELSP
por meio de uma abordagem multi-agente de reinforcement learning (RL) para a obtengao de

politicas de controle de estoque dindmicas.

O modelo proposto pelos autores adota uma abordagem de simulagdo-otimizagao para apri-
morar gradativamente a politica de sequenciamento de produtos, no qual cada agente RL repre-
senta um tipo de produto (Figura 13). Caso um produto i esteja sendo produzido, assim que o
sistema atinge seu nivel de estoque basico R; (nivel de estoque maximo), o agente RL; pode
tomar duas decisoes: trocar a producdo para um outro produto 7 ou manter a maquina (res-
ponsavel pela produgdo) inativa. Caso haja troca do tipo do produto, o processo € repetido,
agora para o produto j. Além disso, esse processo € repetido continuamente até que se obtenha

uma politica de controle de estoques clara.

Note que os agentes RL’s ndo determinam os valores de nivel de estoque basico Ry, (V k =
1,2,...,N). Porém, os autores ainda aplicam uma busca de segundo nivel para encontrar a

combinacdo mais apropriada dos valores de R por meio do uso do software de otimizagao
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OptQuest em conjunto com o software de simulacio ARENA. A busca realizada € local e é

aplicada sobre um espaco de + 5 unidades.

Figura 13: Esquema do modelo de reinforcement learning de Paternina-Arboleda e Das (2005).

|
|
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Fonte: Paternina-Arboleda e Das (2005).

Kimpf e Kochel (2006) exploram um problema similar ao SELSP, mas assumem a pos-
sibilidade de atender demandas pendentes. Os autores estudam a performance de politicas de
sequenciamento simples e buscam valores 6timos para os parametros de estoque por meio de

um modelo de simulag¢do-otimizacao.

De forma a simplificar a questdo do sequenciamento dos produtos a serem manufaturados,
Kéampf e Kochel (2006) comparam trés diferentes politicas: FCFS (First Come First Served),
aleatdria (cada item tem chance equiprovavel de ser escolhido) e ciclica (ordem definida a

priori, considerando apenas itens que precisam ser produzidos).

A estratégia adotada pelos autores para a busca de solucdes para o problema foi a utilizagao
de um algoritmo genético. Segundo eles, a escolha pelo algoritmo se deve a flexibilidade de
aplicacdo do método para diferentes problemas de otimizacdo, a sua robustez em relacao a
solucdo inicial e a necessidade de poucos inputs. Ainda, Kampf e Kochel (2006) citam a possi-
bilidade de criar “mutacdes” das solucdes buscadas a cada geragdo do algoritmo, o que permite
ampliar o espaco de busca das solucdes do problema e minimizar a exposi¢ao a riscos de apri-

sionamento a minimos locais.

Ja Lohndorf, Riel e Minner (2014) abordam o mesmo problema de SELSP considerando

tempos de setup dependentes da sequéncia de produtos e demandas estaciondrias, no qual os
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autores se dedicam a otimizag¢ao da politica de sequenciamento dos ciclos de producao.

Lohndorf, Riel e Minner (2014) comparam trés politicas de producdo. A primeira delas
¢ a Common cycle policy (CCP), na qual uma sequéncia 6tima € definida a priori de forma a
minimizar o tempo total de setup considerando o sequenciamento de todos os produtos. Cada

produto € produzido exatamente uma vez a cada ciclo.

A segunda politica analisada é a Fixed-cycle policy (FCP), que calcula primeiramente a
frequéncia 6tima de producdo e depois usa essa informagdo para a construcdo da sequéncia
de producgdo. Essa politica pode ser mais vantajosa para casos em que a demanda dos produ-
tos € desbalanceada, uma vez que em politicas como a CCP, produtos de menor demanda sao

produzidos de forma frequente, mesmo sem necessidade.

Por fim, a terceira politica analisada € a Balanced cycle policy (BCP), que busca evitar que
sequenciamentos irregulares e desbalanceados sejam adotados pelo algoritmo de busca caso
tenha uma grande disparidade de custos de sefup. Dessa forma, produtos com baixo custo de
setup sao produzidos diversas vezes e outros com custo mais caro de sefup sdo produzidos com
menor frequéncia, levando a niveis maiores de estoque. Para essa politica, além da minimizagdo
do tempo de setup total, existe outra otimizagao em paralelo, na qual a variabilidade inter-setup
¢ minimizada. Assim, o desvio padrdo dos indices de ocorréncia de um mesmo produto em
um mesmo sequenciamento de producdo é minimizado, o que permite garantir padrdoes mais

regulares de sequenciamentos de producao.

O método de busca adotado pelos autores se baseia em uma busca iterativa em duas etapas.
A primeira delas € uma busca global usando o algoritmo de Covariance matrix adaptation evo-
lution strategy (CMA-ES), o qual busca vetores que representem sequenciamentos de produ¢do
de forma a minimizar a esperanca do custo médio da solug@o proposta. O algoritmo € iniciado
com um palpite inicial da melhor solu¢do e uma regido de confianca onde se espera encontrar a
melhor solucdo. Com o output do primeiro algoritmo de busca, um segundo algoritmo ¢é apli-
cado, realizando uma busca local da melhor solu¢do na “vizinhanga” da sugestao do CMA-ES.
Nessa segunda etapa, os autores analisam o desempenho de duas heuristicas, a Lin—Kernighan

e a 2-opt.

A utilizacao de um método de busca em duas etapas, com uma busca global e uma busca
local, como proposto por Lohndorf, Riel e Minner (2014), € interessante, pois permite refi-
namentos das solu¢des de métodos de busca global. Todavia, o desempenho da metodologia
proposta pelos autores ainda é dependente do palpite inicial estabelecido e do hiperparametro
ligado a regido de confianga da solucdo, exigindo certo conhecimento prévio da possivel solu¢ao

otima.
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Finalmente, cita-se o trabalho de Mesquita e Tomotani (2022), em que o controle de es-
toques foi analisado diante do cendrio do SELSP considerando tempos de setup dependentes
do sequenciamento dos produtos. Por meio de uma abordagem de simulacao-otimizac¢do, os
autores investigaram o problema analisando o impacto de diferentes parametros do sistema (ex:
politica de sequenciamento de produtos, nimero de produtos, flutuagdo da demanda, custos
etc.) na variavel resposta (custo total de estoque) e nas variaveis de decisio, (s, S) - que corres-
pondem ao ponto de reabastecimento de estoques e ao nivel de estoque maximo dos produtos

(consideradas iguais para todos os produtos).

Além disso, foram consideradas duas politicas de programacdo da producdo: FIS (First
in Sequence), que define a ordem de verificacdo dos niveis de estoques dos itens, iniciando a
producdo para o primeiro que apresentar um nivel abaixo do ponto de reabastecimento; e o
LDS (Lowest Days of Supply), que, dentre os itens que estdo com niveis abaixo do ponto de

reabastecimento, prioriza aquele que tiver menor tempo de cobertura da demanda.

Figura 14: Exemplo de implementagdo do modelo de simulacdo no AnyLogic de Mesquita e

Tomotani (2022).
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Fonte: Mesquita e Tomotani (2022).



50

A metologia adotada por Mesquita e Tomotani (2022) levou a implementacdo do modelo
de simulacdo em um software dedicado, o AnyLogic, como visto na Figura 14. Além disso,
a otimizacdo dos pardmetros de estoque (s, S) de forma a minimizar o custo total de estoque
foi feita com o auxilio de outro software, o OptQuest, um dos softwares lideres do mercado de
solucdes de otimizagdo. Além disso, a utilizacdo do método de simulagio-otimizacdo permitiu
aos autores a possibilidade de estabelecer um DoE para testar diferentes condi¢des operacionais

(ex: taxa de producdo, nivel de utilizacdo das médquinas, variabilidade da demanda etc.).

A utilizacdo de softwares como o OptQuest impede que os autores do estudo tenham co-
nhecimento a respeito do método de otimizacao utilizado e o critério de parada do algoritmo
proposto, limitando possiveis otimizagdes para maior adequagdo da ferramenta ao problema
explorado. Dessa forma, a etapa de otimizagdo torna-se um processo caixa preta (Figura 15),
na qual € possivel ter conhecimento apenas dos inputs e dos outputs do modelo de otimizagao.
Além disso, a utilizacdo de um software com um método genérico de otimiza¢do pode mostrar

menor eficiéncia em relagdo a uma ferramenta especifica desenhada para o problema estudado.

Figura 15: Modelo de Otimizacdo do OptQuest como um processo Black box.

Modelo de Simula¢io Modelo de Otimizacgio

R — Black Box Outputs
ylog (OptQuest)

Atualizaciio dos parimetros

Fonte: Elaborado pelo autor.

2.4.2 Sintese da literatura

Tendo em vista a andlise dos estudos levantados na sec¢do 2.4.1 e em linha com as revisoes
de literatura sobre o SELSP realizadas por Sox et al. (1999) e Winands, Adan e van Houtum
(2011), pode-se notar que a literatura existente sobre o Stochastic Economic Lot Scheduling
Problem difere-se ndo apenas na metodologia para resolucdo do problema, mas também na

abordagem e foco dado ao SELSP.

Os diferentes estudos realizados at¢é o momento tomam duas abordagens distintas: a
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defini¢do de tamanho de lote e o sequenciamento da producdo. Em geral, os estudos analisados
adotam simplificacdes do problema para que possam focar na resolu¢dao de um dos pontos men-
cionados acima. A titulo de exemplo, Kidmpf e Kochel (2006) restringiram as possibilidades
de sequenciamento de produtos e otimizaram os parametros de controle de estoque. Por outro
lado, Paternina-Arboleda e Das (2005) restringiram o espaco amostral dos possiveis valores
dos parametros de estoque e focalizaram na determinacdo de métodos de sequenciamento dos

produtos.

Nota-se ainda que, para a determinacdo do sequenciamento de produtos, duas principais
estratégias sdo adotadas: politicas de sequenciamento ciclicas ou dinamicas. Para as politicas
ciclicas, algoritmos sdo utilizados para definir uma sequéncia fixa de producao a ser repetida
continuamente pela fabrica (WAGNER; SMITS, 2004). Ja para sequenciamentos dindmicos, a
decisdo passa a ser de definir politicas de prioriza¢ao dos produtos (PATERNINA-ARBOLEDA;
DAS, 2005).

A defini¢ao das politicas de controle do tamanho dos lotes de produ¢do costuma ser mais
simples (e possivelmente mais facil de aplicar em situacOes reais) e, em geral, é baseada em
politicas tais como os reabastecimentos (R, ()) ou (s, 5), vistos na se¢do 2.1.3. A complicacio
para essa parte do problema estd mais ligada a busca de métodos eficientes para a determinagao

dos parametros de controle de estoque.

Com relacdo aos métodos de busca observados, pode-se notar que as sugestdes dadas pelos
autores analisados também sdo distintas. Os algoritmos utilizados s@o variados, podendo tomar
proveito de buscais globais (KAMPF; KOCHEL, 2006), locais (WAGNER; SMITS, 2004) ou
uma combinac¢do dos dois (LOHNDORF; RIEL; MINNER, 2014).

Por fim, com relacdo a implementacdo dos modelos de simulagdo e otimizacdo propos-
tos pelos estudos analisados, notou-se que ha certa diversidade, com autores fazendo o uso
de softwares comerciais, tais como AnyLogic € ARENA para simulagdes e o OptQuest para

otimizagao.

Dessa forma, no presente Trabalho, a abordagem para o Stochastic Economic Lot Sche-
duling Problem serd a defini¢do de tamanho de lotes para uma politica de reabastecimento (s,
9), definindo sequenciamentos por meio de politicas simples de priorizacdo de produtos. Além
disso, o Trabalho seguird com a abordagem de simulagao-otimizac¢do, implementando tanto o
modelo de simulagdo como o de otimiza¢do em um software aberto, o Python, conforme deta-

lhado no capitulo 3.
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3 METODO

Conforme estabelecido na secdo 1.3, este Trabalho de Formatura propde-se a identificar
e implementar métodos numéricos eficientes para a calibracdo dos parametros de controle de

estoque (s;, S;) para o Stochastic Economic Lot Scheduling Problem.

Para tal, adota-se a estratégia de simulagdo-otimizac¢ao implementada em Python por meio
da qual sdao usados dois modelos distintos, um de simulacdo, que simula uma méaquina com
producdo em lotes e N estoques, com base nos pardmetros do problema; e outro de otimizagdo,
que aplica métodos numéricos, tais como os apresentados na se¢ao 2.3, para buscar otimizar os

pares (s;, S;) e, consequentemente, os custos e nivel de servico.

Devido as caracteristicas do problema, que impedem a definicdo da forma analitica da
func¢do objetivo, € possivel perceber a importancia da acdo combinada dos dois modelos, uma
vez que a avaliagdo das solucdes propostas pelo modelo de otimizacdo s6 pode ser feita com o
uso do modelo de simulag@o. Assim, o algoritmo de busca é alimentado com a saida do modelo
de simulagdo em cada iteracdo, até que o critério de parada do modelo simulacdo-otimizagdo

(definido a priori) seja atingido, conforme apresentado na Figura 16.

Note que essa avaliacao das solucdes € feita com base no custo total de estoque computado
ao final da simulagdo para a configuracdo analisada, sendo o objetivo do otimizador encontrar a

melhor configuracdo de N pares (s;, S;) que minimizem esse custo.

Figura 16: Diagrama do principio de funcionamento do modelo de simulac¢ao-otimizacao.
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Fonte: Elaborado pelo autor.
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Além disso, para identificar os métodos de busca implementados mais eficientes, neste
Trabalho, € adotada a metodologia de delineamento de experimentos (DoE). Contudo, para que
os algoritmos possam ter seus desempenhos comparados, € preciso ajustar os parametros de

cada método para que eles estejam em suas melhores condi¢des de execugao.

Dessa forma, os experimentos realizados sao divididos em duas etapas:

(I) Experimentos de calibracio;

(I) Experimentos de comparacao.

Experimentos de calibracao

Primeiramente, realizam-se os experimentos de calibracdo, nos quais os métodos de busca
sdo testados em instancias do problema similares as propostas nos experimentos de comparagao.
O objetivo dessa etapa € de verificar qual a melhor configuracdo dos parametros particulares de

cada método de busca para a resolu¢ao do problema estudado.

Assim, um plano de experimentos de calibracdo € desenhado para cada algoritmo, estabe-
lecendo diferentes niveis para cada parametro com base em referéncias da literatura, conforme
detalhado no capitulo 5.1. Define-se como a melhor configuragdo de hiperparametros aquela

que obtiver o menor custo de estoque total obtido durante os experimentos.
Experimentos de comparacao

Em seguida, com os algoritmos calibrados, realizam-se os experimentos de comparagao.
Nessa etapa, os métodos de busca implementados e calibrados sdo testados sob diversas
“condicoes de operacao” estabelecidas por meio de diferentes instancias do problema que se
distinguem gracas a mudancas nos parametros gerais, tais como nimero de produtos, variacao

da demanda, demanda média, custos unitarios etc.

Sendo assim, por meio de um novo conjunto de experimentos, conforme detalhado no
capitulo 6, é possivel verificar a robustez das solucdes encontradas pelos algoritmos e dos
métodos de busca de solu¢do para condi¢cdes operacionais mais exigentes e problemas de maior

complexidade, respectivamente.

Nos capitulos a seguir, apresentam-se em maior detalhe os modelos de simulacdo e de

otimizacao, assim como os experimentos desenhados e seus respectivos resultados.
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Neste capitulo, apresentam-se o modelo conceitual da linha de producdo simulada e sua

implementa¢do no modelo de simulag@o proposto.

4.1 Modelo conceitual

O presente modelo conceitual representa a organizacdo de uma fabrica. O modelo € estru-

turado em dois médulos: de Vendas e de Produgdo, conforme sugerido por Altiok e Melamed

(2010).

Neste Trabalho, considera-se uma linha de produgdo capaz de produzir N produtos, produ-

zidos em lotes, com tempos de sefup para cada troca de produto na linha.

Todos os produtos manufaturados na linha de producao seguem uma estratégia de Make-to-

Stock (MTS) para atender uma demanda didria varidvel que consome os produtos do estoque de

produtos acabados da fabrica ao final de cada dia.

Figura 17: Modelo conceitual de vendas e

producao para produtos MTS.
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Fonte: Adaptado de Mesquita e Tomotani (2022).
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A Figura 17 representa a 16gica por trds dos médulos de vendas e produgdo para a estratégia
MTS adotada.

O recebimento das demandas didrias é realizado pelo Mddulo de Vendas, que recebe e
consolida um tnico pedido por dia para cada produto, verifica se existe estoque suficiente para
os itens solicitados e atende a demanda. Caso o estoque seja insuficiente para atender a demanda
por completo, a demanda € satisfeita de forma parcial e os itens faltantes sao considerados como

vendas perdidas (sem backlog). Assim, tem-se que:

Y;,t = min(Xi,t7 Iz',t) 4.1)

Onde:

Y. : Vendas do produto ¢ no dia ¢
X+ : Demanda do produto ¢ no dia ¢

I; + - Quantidade em estoque para o produto 7 no dia ¢

Ap6s a verificagdo do estoque e do atendimento das demandas do dia, compara-se o es-
toque remanescente dos produtos com seus respectivos pontos de reabastecimento s;. Caso a
quantidade em estoque seja maior do que o estoque minimo, nada € feito. Porém, caso contrario
(ie. Iy < s;), se 0 Modulo de Produgdo estiver ocioso, ele € ativado e uma mensagem € en-
viada a ele contendo informagdes sobre os itens que devem ser produzidos, adicionando-os em
um backlog de produgdo. Note que, caso haja necessidade de produzir um item e o Mddulo
de Producdo ja esteja ativo, € verificado se o item a ser produzido ja estd no backlog (i.e. sua

producio ja foi solicitada) e, caso ndo esteja, 0 mesmo € adicionado nessa lista.

A decisdo do proximo produto a ser produzido e da quantidade a ser produzida ¢é feita
no Médulo de Producdo. A priorizagdo para o sequenciamento dos produtos segue uma es-
tratégia LDS (Lowest Days of Supply), ou seja, os itens pendentes (i.e. que estao no backlog de
produgdo) sdo ordenados conforme o tempo de cobertura de demanda e o produto com menor

cobertura é priorizado.

Esse processo de verificagdo da prioridade dos produtos € repetido toda vez que ha troca de
um SKU na producdo para que sejam atualizados os tempos de cobertura dos itens e o produto

com menor tempo de cobertura no momento do setup seja escolhido.

A quantidade a ser produzida de cada produto € definida por uma politica do tipo order-
up-to, na qual se produz visando a atingir o estoque maximo, .S;. Assim, a quantidade a ser

produzida € dada pela diferenca entre S; e o estoque atual do produto ¢ no momento em que
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ele € selecionado para iniciar sua producdo. Observe que, para um dado produto, caso ocorram

pedidos enquanto o lote é produzido, o nivel .S; ndo € atingido.

O médulo de produgdo mantém-se ativo até que nao haja mais itens a serem produzidos,

quando entra em repouso e aguarda novo sinal do médulo de vendas.

A fébrica funciona de forma continua, operando durante 7 dias por semana e 24 horas por

dia e a maquina tem uma taxa de produ¢ao média dada por y, que € igual para todos os produtos.

Porém, considera-se que a taxa de producdo efetiva da maquina € influenciada pela sua taxa
de eficicia (OEE - Overall Equipment Effectiveness), representada pelo simbolo p. Esse indi-
cador pode ser influenciada por fatores como tempo de sefup, manutengdo, quebras, qualidade

dos produtos, entre outros.

WE fetiva = [ * P 4.2)

Note que, embora varidvel, a demanda X ; para dado produto 7 no dia ¢ € estaciondria, ou
seja, pode-se representar sua distribuicao a partir de uma distribuicao log-normal com média y;
e desvio padrdo o;, que sdo dependentes dos pardmetros d; (demanda média do produto) e de

um coeficiente de variacdo, cv, comum a todos os produtos:

Xt~ Lognormal(uiog_mrmal, (Uiog_nmmal)% 4.3)

d
log—normal _ In ( v ) 4.4
Hi Vit e? @
g7 =\ /In(1 + cv?) (4.5)

Viei=12..,N

O tempo de processamento de um lote de produgdo na maquina segue uma distribuicao
log-normal, com os parametros da distribuicao calculados de forma similar ao da distribuicdo

das demandas dos produtos:

log—normal 2

prod log—normal
15 ~ Lognormal(:uprod (,U, CU)? (Uprod (lua CU)) ) (46)
Para iniciar a producdo, considera-se que seja necessario realizar um setup na maquina com
p
valor médio de """ Assim como para o tempo de produgio dos lotes, o tempo de setup segue
uma distribuicao log-normal:

3 - 2
12~ Lognormal (W2 ™™ (1577, cv) (01280 (577, c0)’) @)
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Por fim, ressalta-se que o desempenho do controle de estoque € medido pelo seu nivel de
servigo e pelo seu custo de estoque total anual, que considera custos de manutencao de estoque,

custos de setup e custo de ruptura de estoque, os quais podem ser computados da seguinte

forma:
Tsim N Tano
THC = (Z Eiy - hc> e (4.8)
t=1 =1
Tsim N Tano
TLC = ( (Diy — Dyy) - zc> i 4.9)
t=1 =1
Tano
TSC = Ngetup - 5C - Teim (4.10)
TIC=THC+TSC+TLC “4.11)
Tvendas
S = vendas (4.12)
Tdemand(z
Onde:

T"™ : Total de dias simulados
7" : Total de dias de operacdo da empresa no ano

THC' : Custo de manutencdo de estoque anual (Total Holding Cost)
TLC' : Custo de ruptura de estoque anual (Total Lost Sales Cost)
TSC' : Custo de setup anual (Total Setup Cost)

Nietup : Numero total de sefups realizados no ano
TIC' : Custo total de estoque anual (Total Inventory Cost)

Xiotar - Demanda total anual
Yiotar : NUmero total de vendas anual

SL : Nivel de servigo (Service Level)

Na Tabela 1, apresentam-se os valores para os parametros fixos do problema. Ja na Tabela

2, relinem-se a notagdo e a descri¢do das principais varidveis do problema.



Tabela 1: Parametros fixos do problema.
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Variavel Descricao Valor  Unidade
Tene Total de dias de operacdo da empresa no ano 250 Dias
toctur Tempo de setup base médio 1 Horas
hc Custo didrio unitdrio de manutengdo do estoque 0,1  R$/dia/unid.
lc Custo unitério de ruptura de estoque 40 R$/unid.
sc Custo fixo de setup 250 RS/setup
Tabela 2: Variaveis e parametros do problema.
Variavel Descricao Unidade
N Numero de itens produzidos -
Tsim Total de dias simulados Dias
Xiotal Demanda total anual Unid.
Yiotal Numero total de unidades vendidas no ano Unid.
d; Demanda média diério do produto 7 Unid./dia
cv Coeficiente de variacdo -
P Taxa de eficacia da maquina -
Taxa de producdo da maquina Unid./dia
S; Estoque minimo/Ponto de reabastecimento para o item % Unid.
S; Estoque maximo o item ¢ Unid.
THC Custo de manutengdo de estoque anual R$
TLC Custo de ruptura de estoque anual R$
TSC Custo de setup anual R$
TIC Custo total de estoque anual R$
SL Nivel de servico -

4.2 Modelo computacional

O modelo computacional foi implementado em dois blocos, o de vendas e de produgao,

conforme os respectivos médulos apresentados anteriormente na secdo 4.1. Esses modulos

foram implementados por meio de um modelo de simulagdo de eventos discretos com o uso da

biblioteca Simpy do Python.

No Algoritmo 2 apresenta-se o pseudocdédigo para o médulo de vendas de cada produto,

que recebe os pedidos diariamente e verifica se € possivel atender a demanda com completude,

bem como se é necessario iniciar a producao de algum item.
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De forma similar, no Algoritmo 3 apresenta-se o pseudocddigo para o médulo de produgao

implementado que verifica no log quais os produtos a serem fabricados, seleciona o SKU mais

prioritdrio e simula o tempo de sefup e de manufatura para o item.

Ao final da simulag¢do, os resultados sdao apresentados ao usudrio por meio de um grafico de

monitoramento do nivel de estoque para os itens. Além disso, sdo exibidos os indicadores de

desempenho computados durante a simulagdo, tais como os custos (TIC, THC, TLC e TSC) e o

nivel de servico (SL), como mostrado na Figura 18. O exemplo da Figura 18 representa o caso

particular em que (s;,.S;) = (s,5)Vi=0,2,...,9.

Algoritmo 2 Mdédulo de vendas

1: funcdo MODULO DE VENDAS(enuv, id) > Onde env € ambiente de simulagdo e id € o

A A S

10:
11:
12:
13:
14:

15:

identificador do produto

Enquanto VERDADEIRO faca

D;q+ <~ DEMANDA(:d) > Computa a demanda estaciondria didria
Quendas < Min(Fig, Digy) > Computa a quantidade vendida
E;q + ATUALIZAR(Q yendas) > Atualiza o estoque
Se F;y < s, Entao > Verifica se atingiu ponto de reabastecimento

Se id ndo estd em Logyroducao Entao > Verifica se producao ja foi solicitada
Logprodugio < ADICIONAR(id)

Fim Se
Fim Se
Tvendas < Tvendas + Quendas > Atualiza o total de vendas
Tiemanda < Taemanda + Did ¢ > Atualiza o total de demanda

TLC + T + (Djgt — Quendas) - lc - > Atualiza o custo total de vendas perdidas
Yield SIMULAR(24 horas) > Executa todos os eventos das préximas 24 horas

antes de reiniciar o loop

Fim Enquanto

16: Fim funcao
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Algoritmo 3 Mddulo de produgao

1: fun¢do MODULO DE PRODUCAO(enw, Logproducao) > Onde env € ambiente de simulag@o e

Logproducao € a lista de itens a produzir

2 Enquanto VERDADEIRO faca
3 Yield ATIVACAO() > Aguarda ativagao do médulo de produgdo
4 id < PRIORIZAR(Logproducao) > Seleciona o item a produzir
5: Qprod < Sia —
6 Yield SETUP MAQUINA (env, id) > Simula o tempo de setup
7 Yield PRODUZIR (env, id, Qprod) > Simula o tempo de produgdo do item
8 Se TAMANHO( Logproducio) igual a 0 Entao > Verifica se hd mais itens a produzir
9 env < REPOUSO PRODUCAO(env)

10: Fim Se

11: Fim Enquanto

12: Fim funcao

Figura 18: Exemplo de simulacdo para N = 10.
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Fonte: Elaborado pelo autor.

4.3 Verificacao e Validacao

Com o modelo computacional implementado, € preciso fazer a verificagdo do modelo para
atestar sua coeréncia e aderéncia ao problema a ser resolvido e, para tal, pode-se simular o
funcionamento da fabrica com pardmetros deterministicos em um ambiente com baixa comple-

xidade.

Para verificar a coeréncia dos resultados do modelo, foram realizados os seguintes testes:

1. Teste 1: Um produto com demanda nula;
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2. Teste 2: Um produto com demanda unitdria deterministica e taxa de producdo muito
maior do que a demanda didria;

3. Teste 3: Um produto com demanda deterministica e taxa de produgdo igual a demanda

didria;
4. Teste 4: Um produto com demanda deterministica e ponto de reabastecimento nulo;
5. Teste 5: Dois produtos com demandas deterministicas distintas;

6. Teste 6: Dois produtos com demandas deterministicas iguais e pontos de reabastecimento

distintos;
7. Teste 7: Trés produtos com demandas deterministicas iguais e pontos de reabastecimento

iguais.

Figura 19: Testes 1 a 6 de verificacdo e validacdo do modelo de simulagao.

Inventory Inventory
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Inventor Inventor
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o P P F
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Days bays

(c) Teste 3. (d) Teste 4.

el I

Days

oays

(e) Teste 5. (f) Teste 6.

A seguir, apresenta-se em mais detalhe o ultimo teste listado (Teste 7), que ilustra a validade

do modelo no auxilio a resolu¢do do problema explorado neste Trabalho.
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Tabela 3: Parametros comuns aos cendrios de exemplo do Teste 7.

Variavel Valor Unidade

N 3 -
Tsim 50 Dias
d; 10 Unid./dia
cv 0 -
P 100% -

30  Unid./dia
Smaz 150 Unid.

Assim, para uma fabrica que produz 3 tipos de itens, define-se uma demanda diaria co-
mum a todos de 10 unid./dia/produto, conforme mostrado na Tabela 3, e parametros de estoque

também comuns tais que (s;, S;) = (Smin, Smaz), Vi = 0,1, 2.

Ao definir-se dois cendrios, A e B, tais que os respectivos pontos de reabastecimento sao
sl =100 e sB, = 50, e assumindo que os estoques iniciais sdo iguais a S,,qz, € possivel

simular a performance do sistema e obter os resultados apresentados na Tabela 4 e nas Figuras
20e 21.

Tabela 4: Comparacdo dos cendrios A e B (N = 3) para o Teste 7.

Cendrio A Cenario B
Smin 100 50
THC R$6.420 R$4.900
TLC R$ 0 R$ 38.000
TSC R$18.750 R$ 10.000
TIC R$25.170 R$52.900
SL 100% 87,33%

Ao analisar os resultados obtidos, percebe-se que eles s@o coerentes com o comportamento
esperado. O cendrio A obteve um custo de manutencao de estoque maior do que o cendrio B, ja

que seu ponto de reabastecimento mais conservador leva a um nivel de estoque médio maior.

Essa abordagem mais conservadora também foi importante para o nivel de servico apresen-
tado pelos cendrios, que foi de 100% para o cenario A (com T'LC' 4y = R$ 0) e 87,33% para o

cendrio B, que apresentou um custo de ruptura de estoque bem maior (7' LCp = R$ 38.000).

Com uma menor diferenca entre os valores de S,,,q. € Simin, Mais setups sdo exigidos para o

cendrio A quando comparado ao cenario B, o que foi verificado pelo custo de setup computado
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para as respectivas instancias (T'LCy = R$ 18.750 e TLC'z = R$ 10.000).

Por fim, embora para certos empreendimentos o nivel de servi¢o apresentado pelo cendrio
B seja satisfatério, observa-se que o trade-off entre o tamanho dos lotes e a performance da

fabrica do cendrio B ndo ¢ atrativo, pois seu custo total final € maior do que para o cendrio A
(TLC4 = R$25.170 < TLCp = R$ 52.900).

Portanto, por meio do exemplo apresentado, pode-se validar a utilidade do modelo na
comparacao de diferentes configuragdes de sistemas produtivos, o que auxiliara na identificagdo
das melhores configuracdes de pardmetros de controle de estoque para uma fabrica, que € um

dos objetivos deste Trabalho de Formatura.

Figura 20: Resultado obtido para o Cenario A.
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Fonte: Elaborado pelo autor.

Figura 21: Resultado obtido para o Cenério B.
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5 MODELO DE SIMULACAO-OTIMIZACAO

Com o modelo de simulagdo verificado e validado, segue-se com a implementacdo dos
métodos de busca em duas etapas: a implementacao da estrutura global do método e a calibragao

dos hiperparametros dos algoritmos.

5.1 Experimentos de calibracao

Na primeira fase da implementag¢do dos métodos de busca, o foco principal estava na criagao
da estrutura fundamental dos métodos, incluindo a defini¢do das principais funcdes conforme o

modo de funcionamento dos métodos, como apresentado na se¢ao 2.3.

Ap6s a implementacgao inicial do método de busca, passou-se para a segunda etapa: a de
calibragdo. Nessa fase, o objetivo era ajustar os valores dos hiperparametros de cada algoritmo

para otimizar seus desempenhos em termos de efici€ncia e precisao.

A calibracdo € uma etapa critica, pois € por meio dela que serdo buscados os potenciais
maximos de performance dos métodos de busca para o problema estudado. E importante ressal-
tar que a calibracao de algoritmos nio € uma tarefa trivial e pode ser tratada como um problema
a parte por si s6, devido a complexidade do processo e ao tempo que pode tomar (HAMADI;
MONFROY; SAUBION, 2012).

A necessidade de adaptar os valores dos parametros as particularidades do problema e as
restricoes de execugdo dos experimentos impede a simples utilizacdo de parametros indicados
na literatura. Todavia, os valores da literatura ainda se mostram uteis para indicar ordens de
grandeza e intervalos, como em Jin et al. (2019) para o algoritmo Nelder-Mead; ou relagdes de
dependéncia entre os parametros, como indicado em Wong e Komarudin (2008) e Angelova e

Pencheva (2011) para os algoritmos Ant Colony e Genetic Algorithm, respectivamente.

Além disso, € preciso aliar a intui¢ao e o conhecimento prévio do problema para equilibrar

as estratégias de “intensificacdo” e “diversificacdo” durante a busca por solucoes.

A intensificacdo diz respeito a exploracdo com foco em regides do espago de busca que
ja foram observados. Assim, essa € uma estratégia que visa a aperfeicoar as solugdes atuais,

buscando outros candidatos proximos aqueles que ja foram identificadas como promissores.
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Isso significa que o algoritmo prioriza a exploracdo de areas onde as melhores solu¢des foram

encontradas anteriormente.

A diversificagdo, por outro lado, visa a explorar dreas do espaco de busca que ainda nao
foram bem exploradas, mesmo que isso signifique sair das regides onde boas solu¢des ja foram
encontradas. E uma estratégia que ajuda a evitar a convergéncia prematura e a garantir que o
algoritmo continue procurando por solugdes potencialmente melhores em diferentes partes do

espaco de busca.

As principais técnicas de otimizacdo de métodos de busca metaheuristicos encontradas na
literatura podem ser classificadas em otimizagdes online e offline. As técnicas online sao mais
complexas e buscam adaptar os valores dos hiperparametros durante a execu¢dao do algoritmo
para resolucdo de instancias do problema. Ja as técnicas offline sdo mais simples e buscam a
configuracdo apropriada dos algoritmos antes da execugdo dos algoritmos e, tradicionalmente,
esses métodos de otimizacdo dos hiperparametros ocorrem via tentativa e erro (HAMADI;
MONFROY; SAUBION, 2012).

Para este Trabalho, optou-se pela adoc¢do da calibragdo offline por meio de um experimento
fatorial completo para cada um dos trés métodos de busca que possuem hiperparametros. Para
cada algoritmo, buscou-se na literatura intervalos de valores esperados para os parametros e, a
partir deles, definiram-se diferentes niveis para cada hiperparametro. Devido a diferencga entre
o nimero de parametros a serem calibrados em cada método de busca, buscou-se equilibrar o

numero de experimentos realizados para cada algoritmo, conforme ilustrado na Tabela 5.

Tabela 5: Tabela dos experimentos fatoriais de calibracao.

Algoritmo Parametros Tipo de experimento Combinacoes Minutos
Nelder-Mead 4 4+ 256 2048
Genetic Algorithm 5 3* 243 1944
Ant-Colony 8 ok 256 2048

Note que o teste das configuragdes/combinagdes de parametros foi feito com base em 8
instancias do problema estudado, para que se pudesse testar a performance dos parametros
em diferentes circunstincias. Assim, para cada conjunto de hiperparametros, os algoritmos

buscaram solucdes para os cendrios apresentados na Tabela 6:
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Tabela 6: Tabela dos cendrios a serem testados por cada configuracao de hiperparametros dos
métodos de busca.

Cenario N p c¢v p  Tempo de execucao

1 5 0 0,1 80% 60 s
2 5 0 05 80% 60 s
3 5 0,15 0,1 80% 60 s
4 5 0,15 05 80% 60 s
5 20 0 0,1 80% 60 s
6 20 0 05 80% 60 s
7 20 0,15 0,1 80% 60 s
8 20 0,15 0,5 80% 60 s

Na Tabela 6, N € o nimero de produtos, p € um fator de distribuicdo de demanda, cv € o
coeficiente de variagdo e p € a taxa de eficicia da maquina, conforme descrito com mais detalhes

no capitulo 6.

A cada algoritmo teve 60 segundos para buscar o melhor custo possivel para cada cendrio.

Dessa forma, cada algoritmo foi calibrado durante aproximadamente 2.000 minutos ou 33 horas.

Ao final, para avaliar o desempenho da configura¢do de parametros, foram comparadas a
soma dos custos obtidos nos 8 cenarios, sendo considerada como a melhor configuracdo aquela

com menor custo total.

A seguir, apresentam-se em mais detalhes os diferentes métodos de busca implementados

para a resolu¢@o do problema estudado, assim como a calibragcdo executada para cada um deles.

5.2 Busca aleatoria

O método de busca aleatdria é uma abordagem que se baseia na aleatoriedade para explorar
e buscar solucdes em um dado espaco de busca. Nesse método, o processo de busca ndo segue

uma ordem deterministica, mas sim uma estratégia guiada pelo acaso.

Ao utilizar o método de busca aleatéria, o algoritmo seleciona uma solu¢do candi-
data de forma aleatoria dentro do espaco de busca e avalia seu desempenho. Em seguida,
na proxima iteragdo, uma nova solucido candidata é sorteada e avaliada, sem qualquer in-

fluéncia/dependéncia do resultado obtido na iteragdo anterior.

Se a nova solucdo candidata obtida for considerada melhor do que a solucdo anterior, ela é
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aceita e se torna a nova solucdo atual. Caso contrério, a solu¢@o atual permanece inalterada.

Uma das principais vantagens do método de busca aleatdria € a sua capacidade de evitar
a estagnacdo em 6timos locais, pois a aleatoriedade na escolha das solugdes permite que se-
jam exploradas areas diferentes do espaco de busca, aumentando a probabilidade de encontrar

solucdes melhores. Além disso, de forma prética, o método € simples de ser implementado.

No entanto, € importante ressaltar que o método de busca aleatéria ndo trabalha com a
nog¢do de convergéncia para solucdes 6timas, o que resulta em uma exploracao incompleta de
subespagos com melhor potencial. Devido a esse fato, o método torna-se sensivel a dimensio-

nalidade do problema, pois grandes problemas possuem espacgos de busca mais complexos.

Na Figura 22, pode-se observar o comportamento do algoritmo descrito acima. Para um
problema com 5 produtos, o algoritmo foi capaz de encontrar solu¢des melhores com o avango
das iteracoes. Porém, pela Figura 22, fica evidente que ndo hd uma convergéncia nas solu¢oes

candidatas analisadas uma vez que ha grande variacdo entre os custos computados.

Figura 22: Custo dos candidatos analisados em cada iteragdo da Busca aleatéria (Random
Search).
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Fonte: Elaborado pelo autor.

Em resumo, o método de busca aleatéria é uma abordagem interessante para explorar
espacos de busca em problemas em que a estrutura do espaco ndo € conhecida ou nao pode
ser facilmente explorada. Sua capacidade de evitar 6timos locais e sua simplicidade de
implementagdo sdo caracteristicas atrativas. No entanto, € necessdrio avaliar cuidadosamente a

adequacdo desse método em relacdo as caracteristicas do problema em questao.

No Algoritmo 4, representa-se o pseudocddigo usado para implementagdo da busca

aleatoria.
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Algoritmo 4 Busca aleatdria

1: fun¢do BUSCA ALEATORIA

2: Spest < None

3: Joest = 00

4: continuar < VERDADFEIRO
5: Enquanto continuar faca

6: s <— SORTEAR()

7: fs < AVALIAR(s)

8: Se f, < frest Entao

9: Joest < [
10: Spest < S

11: Fim Se
12: Se Critério de parada atendido Entao
13: continuar < FALSO
14: Fim Se

15: Fim Enquanto
16: Retorne sy.;, foest

17: Fim funcao

> Melhor solugdo

> Custo da melhor solugao

> Gera um candidato aleatdrio

> Calcula o custo para o candidato s

5.3 Nelder-Mead

Como visto na se¢do 2.3, o algoritmo de busca Nelder-Mead € um método de busca com

grande potencial para auxiliar na resolucao do problema estudado neste Trabalho de Formatura.

Esse método analisa multiplos pontos durante uma mesma iterag@o e busca a convergéncia para

os candidatos com maior potencial (i.e. menor custo).

Sendo assim, seguiu-se com a implementagdo desse método de busca, adaptando-o para o

contexto deste estudo. No Algoritmo 5, descreve-se o pseudocddigo para o codigo implemen-

tado:
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Algoritmo 5 Nelder-Mead
1: funcao NELDER-MEAD
a < a(constante) > Fator de Reflexdo
B <« B(constante) > Fator de Expans@o
v < 7(constante) > Fator de Contracdo
p < p(constante) > Fator de Encolhimento
Continuar < TRUFE > Critério de parada

2
3
4:
5
6
7

° *x

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

So < SIMPLEXINICIAL() ©Onde Sy é o Simplex inicial com N + 1 vértices
criado aleatoriamente
S« Sy > Simplex atual

Enquanto Continuar faca

Leost < ORDENAR(S) > Calcula os custos de cada ponto de S e ordena em ordem

crescente em uma lista

fis P <= Leost[0], P(Leost[0]) > Determina o ponto de melhor custo
frs Pr < Leost[—1], P(Leost[—1]) > Determina o ponto de pior custo
fss Ps <= Leost|—2], P(Leost|—2]) > Determina o ponto de segundo pior custo

P. <+~ CENTROIDE(S)
P, <~ RESTRINGIR(REFLETIR(F,, P, o))

Se f; < f(P.)E f(P,) < fs Entao > Caso #1
S + NOVO SIMPLEX(S, P, P,)
Senao Se f(P,) < f, Entao > Caso #2
P, « RESTRINGIR(EXPANDIR(P,, P,, 3))
Se f(P.) < f(P,) Entao > Caso #2.1
S < NOVO SIMPLEX(S, Py, P.)
Senao > Caso #2.2
S + NOVO SIMPLEX(S, P,, P.)
Fim Se
Sendo Se f(P,) > f; Entao > Caso #3

Peont1, Peont.2< RESTRINGIR(CONTRAIR(P,, Py, P;, 7))
PCont,final <+ MENOR CUSTO(PCOMJ, PCont,Q)

Se f(Pcont,finat) < frn Entao > Caso #3.1
S <= NOVO SIMPLEX(S, Py, Pcont, final)

Senao > Caso #3.2
S <+ ENCOLHER(S, F)

Fim Se
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33: Senao > Caso #4
34: S <~ RESTRINGIR(ENCOLHER(S, F))

35: Fim Se

36: Se PARAR(S) Entao: > Verifica se critérios de parada sdo respeitados
37: Continuar < FALSE

38: Fim Se

39: Fim Enquanto

40: L¢ost < ORDENAR(S)

41: Jrests Poest < Leost[0], P(Leost[0])
42 Imprima fycs:, Poest

43: Fim funcao

O codigo implementado segue a estrutura indicada na literatura. Porém, para garantir que os
novos candidatos gerados nos processos de reflexdo, expansado, encolhimento e contracio sejam
candidatos vidveis, uma adaptacao foi feita ao cddigo adicionando a fun¢do RESTRINGIR, que

garante que, para cada candidato, todos os pares (s;, .S;) sigam os seguintes critérios:

SZ',SZ' >0 Vi = 1,2, 7]\/v
SZSSZ VZ:LQ,,N

Assim, adotou-se como premissa que caso s; ou S; fossem negativos, seus valores seriam

substituidos por 0 e caso s; > 5;, o valor de s; seria substituido de forma que s; = S;.

De forma a obter melhores desempenhos com o algoritmo, € essencial ajustar seus hiper-
parametros para se adequarem ao problema especifico em estudo. Neste Trabalho, aborda-se
o processo de calibracdo dos parametros do Nelder-Mead focando na adaptacao dos 4 fatores

a, [, v e p, que dizem respeito aos fatores de reflexdo, expansdo, contracio e encolhimento.

A calibragdo dos hiperparAmetros foi realizada por meio de experimento fatorial 4* com-
pleto, conforme explicado anteriormente. Para cada parametro, foram estabelecidos diferentes
niveis, tendo como referéncia os valores apresentados na literatura por Jin et al. (2019). Um

resumo dos valores testados no experimento de calibracdo € apresentado na Tabela 7.
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Tabela 7: Plano de Experimento fatorial 4* de calibragciio do Algoritmo de Nelder-Mead.

Parametro Descricao Nivel 1 Nivel 2 Nivel 3 Nivel 4
«Q Fator de Reflexdo 0,5 1 1,5 2
15} Fator de Expansdo 0,5 1 1,5 2
v Fator de Contracao 0,5 1 1,5 2
p Fator de Encolhimento 0,5 1 1,5 2

Com base no experimento fatorial definido, 256 configuragcdes de parametros foram testa-

das, conforme apresentado na Tabela 8:

Tabela 8: Resultado dos Experimentos de calibracdo para o Nelder-Mead.

Rank | @« (3 ~ »p Custo

1 1,0 0,5 0,5 1,5] 896.373,7
2 1,0 2,0 0,5 05| 899.543.8
3 1,5 20 05 1,0| 903.970,1
4 20 05 05 1,5] 908.802,7
5 1,5 2,0 2,0 05| 9139355

252 120 05 1,5 2,0 1.424901,6
253 120 05 20 15| 1.454.3133
254 12,0 2,0 1,0 2,0 1.455.548,4
255 | 1,5 05 1,5 1,5 1.458.122,7
256 | 1,5 1,0 1,0 1,5 | 1.465.053,6

Dessa forma, os melhores valores para os hiperparametros obtidos apds a calibragdo sdao

apresentados na Tabela 9:

Tabela 9: Parametros calibrados do Algoritmo de Nelder-Mead.

Parametro Descricao Valor
o Fator de Reflexao 1,0
B Fator de Expansao 0,5
v Fator de Contragao 0,5
p Fator de Encolhimento 1,5

Finalmente, na Figura 23 € possivel ver um exemplo de resultado obtido com este método
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de busca para o mesmo caso de 5 produtos testado na busca aleatdria. E possivel notar que a
média do custo dos candidatos analisados tende a convergir para valores proximos ao da melhor
solucdo encontrada, o que ndo era observado com o método de busca aleatoria. Assim, percebe-

se que, no algoritmo de Nelder-Mead, prioriza-se a intensificacdo em relacdo a diversificagdo.

Figura 23: Custo médio do Simplex em cada iteracdo do Nelder-Mead.

Nelder-Mead (Iterations simulated = 76)

120000 - —— Best solution
Average cost of Simplex

120000 -
110000 -
100000 -

50000 4

Total Inventory Cost

80000 4

70000 + 1

60000 -

o 10 20 30 40 50 &0 T0
terations

Fonte: Elaborado pelo autor.

5.4 Genetic Algorithm

O terceiro método de busca implementado foi o Genetic Algorithm (Algoritmo Genético),
uma abordagem do tipo populacional que examina multiplas solu¢des em cada geracao
(iteragdo) e procura convergir para os individuos com maior aptiddo (ou seja, menor custo),
inspirando-se nos mecanismos de sele¢do natural e troca genética. No Algoritmo 6, descreve-se

o pseudocddigo para o cddigo implementado.

Da mesma forma que o Algoritmo Nelder-Mead, o Algoritmo Genético foi calibrado de

forma a obter melhor performance no problema tratado neste Trabalho.

Para adaptar o Algoritmo Genético ao problema em questio, foram ajustados 5 pardmetros:
o tamanho da populag@o (/N,,); 0 nimero de individuos sobreviventes (Npe.p) Ou a taxa de
sobrevivéncia (Pjecp); 0 nimero de pontos de cruzamento (Nerossover) OU a taxa de crosso-
ver (Purossover); @ taxa de mutagdo (7) e a taxa de contribuicdo dos pais () na prole. Esses
parametros desempenham um papel crucial no equilibrio entre diversidade de exploragdo da

busca, bem como na convergéncia do algoritmo.

Novamente, o processo de calibracdo dos pardmetros ocorreu por meio de um experimento
fatorial completo. Dessa vez, um experimento fatorial 3* foi realizado e os possiveis niveis para

cada um dos hiperparametros foram definidos com base nos valores apresentados por Angelova



73

e Pencheva (2011). O plano dos experimentos de calibragcdo € apresentado na Tabela 10.

Tabela 10: Plano do Experimento fatorial 3* de calibracdo do Algoritmo Genético.

Parametro Descricao Nivel 1 Nivel 2 Nivel 3
Nypop Populacio total 10 15 20
Preep Taxa de sobrevivéncia 30% 50% 70%
P ossover Taxa de crossover 50% 70% 100%
T Taxa de mutagdo 1% 5% 10%
Io; Taxa de contribuicdo dos pais  50% 70% 100%

Em seguida, os resultados das 243 configuracdes de parametros testadas sdo apresentados
na Tabela 11.

Tabela 11: Resultados dos Experimentos de calibragio para o Algoritmo Genético.

Rank | Npoy 7 Preep B Plrossover Custo

1 20 0,01 0,7 05 1,0 1.053.974,2
10 0,10 05 0,7 0,7 1.055.028.,9
10 005 05 05 0,7 1.055.926,4
15 001 05 0,7 1,0 1.059.304,3
15 005 07 05 0,7 1.076.928,7

N B~ W N

239 10 001 05 1,0 0,5 1.322.820,2
240 10 005 03 1,0 0,5 1.336.739,9
241 10 0,05 03 1,0 0,7 1.346.779,8
242 15 010 03 1,0 1,0 1.354.014,7
243 10 001 03 1,0 0,7 1.362.867,0

Os valores para os hiperparametros calibrados do Algoritmo Genético podem ser encontra-

dos na Tabela 12, em que /N € o niimero de varidveis do problema.
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Tabela 12: Parametros calibrados do Algoritmo Genético.

Parametro Descricao Valor
Npop Populagdo total 20
Nieep Populagdo sobrevivente 14
Nerossover ~ PoNtos de cruzamento N
T Taxa de mutacdo 1%
6] Taxa de contribuicdo dos pais  50%

Algoritmo 6 Algoritmo Genético

1: fun¢do ALGORITMO GENETICO(N,,,) > Onde N,,, é o nimero de varidveis do problema

A -

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Npop <= Npop(constante) > Tamanho da populagdo
Nieep = Nieep(constante) > # Individuos que sobrevivem por geracao
B « B(constante) > Fator de contribuicdo
T < 7(constante) > Taxa de mutacdo
Nerossover <— Nerossover (constante) > Pontos de cruzamento
Sy < POPULACAO INICIAL(N,0p, Nyar) > Cria a populacgao inicial
Continuar < TRUE > Critério de parada
S« Sy

Enquanto Continuar faca
Leost < ORDENAR(S)
Ssobreviventes <~ SELECAO NATURAL(Nicep, Leost: S)
Spescendentes <~ ACASALAMENTO(N,pop, Nieep, SSobreviventes, 3)
S < Ssobreviventes T O Descendentes
S + MUTACAO(S, 1)
Se PARAR(S) Entao > Verifica se critérios de parada sdo respeitados
Continuar < FALSFE
Fim Se
Fim Enquanto
L¢ost < ORDENAR(S)
rest; Cromossomopest = Leost[0], S[Leost|0]]

Imprima f, s, Cromossomopes

23: Fim funcao
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Figura 24: Custo médio da populacdo em cada iteragao do Algoritmo Genético.

Genetic-Algorithm (Generations simulated = 26)
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Fonte: Elaborado pelo autor.

Finalmente, na Figura 24 € possivel ver o resultado obtido com este método de busca para o
exemplo de 5 produtos testado com os outros métodos de busca. E possivel notar que a média do
custo da populagdo, neste exemplo, apresentou oscilacdo e uma queda lenta em seu valor, mas

a melhor solugdo encontrada pelo algoritmo apresentou evolugdo com o avango das iteragdes.

5.5 Ant Colony

O quarto e ultimo algoritmo de busca implementado foi o Ant Colony. Assim como o
Genetic Algorithm, esse método adota uma abordagem populacional, usando populacdes de
formigas para analisar multiplos caminhos (solu¢des candidatas) durante uma iteragdo, e busca

a convergéncia para as solugdes com maior potencial (ou menor custo).

Assim, prosseguiu-se com a implementagcdo deste método de busca, adaptando-o para se
adequar ao contexto deste estudo conforme apresentado no Algoritmo 7, que descreve o pseu-

docddigo para o Ant Colony Optimization implementado.

Assim como nos outros algoritmos, uma calibracdo dos hiperparametros foi realizada.
Porém, além do parametros préprios do algoritmo, foram testados diferentes valores para a den-
sidade da malha para discretizacdo do problema. Como explicado anteriormente, o algoritmo
Ant Colony utiliza a estrutura de um grafo durante a otimizacao. Assim, para problemas como
o estudado, no qual o espaco de solucdes € continuo, € preciso estabelecer uma discretizagdao do

espago.

Malhas mais densas permitem uma exploracdo mais detalhada do espaco de solugdes,

porém, com o aumento da complexidade do problema (i.e. nimero de varidveis e tamanho
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do intervalo de possiveis valores), a densidade do grafo que representa o problema aumenta

exponencialmente, o que prejudica a performance do algoritmo. Assim, para este problema,

adotou-se como densidade da malha o valor de 5 unidades, logo, para dado intervalo de valores

discretizado, dois possiveis valores para a solucdo estardo separados por 5 unidades.

Algoritmo 7 Ant Colony Optimization

1: funcdao ACO(G) > Onde G € o grafo do problema
2: Npop <= Npop(constante) > Tamanho da populagdo
3: a < a(constante) > Influéncia do feromdnio na escolha
4: B <« B(constante) > Influéncia da visibilidade na escolha
5: p < p(constante) > Taxa de evaporacio
6: Q + Q(constante) > Quantidade de feromonios adicionada por formiga
7: To < To(constante) > Quantidade inicial de feromonios
8: Tomins Tmaz $— Tmins Tmaz (constantes) > Quantidades minima e maxima de feromdnios
9: Nupdate < Nupdate(constante) > N melhores formigas a adicionarem feromdnios

10: frest < 00

11: Caminhopes: < None

12: Continuar < TRUFE > Critério de parada

13: Enquanto C'ontinuar faca

14: Leaminhos < list()

15: Para Formiga em N,,, faca

16: Caminhoformiga < ESCOLHER CAMINHO(G, «, [3)

17: Lcaminhos <= ARMAZENAR(C aminho formiga)

18: Fim Para

19: Leost < ORDENAR(Lcaminhos)

20: Se L.ost[0] < fres: Entao > Atualiza o melhor caminho

21 Joest = Lcost [0]

22: Caminhopes; < Leaminhos| Leost[0]]

23: Fim Se

24: G < ATUALIZAR FEROMONIOS(G, Leaminnoss s @ Nupdates Trmins Tmaz)

25: Se PARAR(C'aminhopest, frest) Entao > Verifica critérios de parada

26: Continuar < FALSE

27: Fim Se

28 Fim Enquanto

29: Imprima f,..;, Caminhopes

30: Fim funcao
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Assim como realizado com os outros algoritmos, uma calibragcdo do algoritmo Ant Colony

os hiperpardmetros do método de busca, conforme ilustrado na Tabela 13:

foi executada, dessa vez por meio de um experimento fatorial completo 2¥. Wong e Komarudin
(2008) apresentam algumas referéncias de valores para os principais parametros do algoritmo,

o que permitiu a defini¢do dos valores mais apropriados para os niveis de possiveis valores para

Tabela 13: Plano do Experimento fatorial 2¢ de calibracdo do Algoritmo Ant Colony.

Parametro Descricao Nivel 1 Nivel 2
Npop Populag@o total 10 20

o} Influéncia do feromonio 1 2

I6] Influéncia da visibilidade 0 1

p Taxa de evaporagao 0,25 0,5
Q Quantidade de feromonio adicionada por formiga 1 2
Nupdate Melhores formigas que poderdo adicionar feromonios  25% 50%
Tonin Quantidade minima de feromdnio por aresta 0,05 1
Tmax Quantidade maxima de feromdnio por aresta 20 30

Os resultados dos 256 experimentos realizados com diferentes configuragcdes de parametros

sdo apresentados na Tabela 14:

Tabela 14: Resultados dos Experimentos de calibracao para o Algoritmo Ant Colony.

Rank | Npop, o fB p Q  Tmin  Tmaz  Nupdate Custo
1 10 2 0 05 2 005 20 0,25 | 1.011.512,8
2 10 2 0 05 2 005 30 0,25 | 1.019.816,2
3 20 2 1 025 1 1,0 20 0,25 | 1.035.834,0
4 20 1 1 025 2 0,05 30 0,50 | 1.050.036,6
5 20 2 0 025 2 0,05 20 0,25 | 1.053.231,6
252 10 1 1 025 2 1,0 30 0,50 | 1.180.912,6
253 o 2 1 05 1 10 30 0,50 | 1.181.282,8
254 0o 1 1 05 2 005 20 0,25 | 1.196.696,0
255 20 2 1 02 2 005 20 0,50 | 1.199.525,0
256 10 2 0 025 1 10 20 0,25 | 1.202.177,0

Sendo assim, os valores encontrados apds o fim da calibragdao podem ser observados na

Tabela 15:
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Tabela 15: Parametros calibrados do Algoritmo Ant Colony.

Parametro Descri¢ao Valor
Npop Populagdo total 10
o} Influéncia do feromdnio

I6] Influéncia da visibilidade

P Taxa de evaporagao 0,5
Q Quantidade de feromonio adicionada por formiga 2
Nupdate N melhores formigas que poderdo adicionar feromonios 2
Tonin Quantidade minima de feromdnio por aresta 0,05
Tmax Quantidade maxima de feromdnio por aresta 20

Note ainda que, para a implementagdo e calibracdo do ACO, foi adotada uma técnica al-
ternativa de atualizac@o da quantidade de feromonios dos caminhos percorridos pelas formigas,

conhecida na literatura como MMAS (MAX-MIN Ant System).

Uma das principais vantagens do MMAS € a sua capacidade de encontrar solugdes de alta
qualidade de forma consistente. Isso se deve ao fato de que o MMAS utiliza uma estratégia
de atualizacdo de feromdnio que limita a quantidade de feromdnio depositada pelas formigas
No percurso (T,,in € Tmaz)- ESSe controle rigoroso ajuda a evitar a convergéncia prematura para
solucdes subdtimas, permitindo que o algoritmo explore continuamente o espaco de busca em

busca de solu¢des melhores.

Além disso, determinou-se uma quantidade maxima de formigas que podem adicionar fe-
romoOnios a cada geracdo (Nypdate). Dessa forma, sdo priorizados apenas os melhores trechos
para acelerar a convergéncia da populacdo de formigas para espagos com maior potencial de

Sucesso.

Na Figura 25, verifica-se o resultado obtido com o método de busca Ant Colony Optimiza-
tion para o exemplo de 5 produtos testado anteriormente. E possivel notar que a média do custo
da populacao apresentou oscilagdes durante sua queda gradativa que acompanhou a queda do

custo da melhor solucdo encontrada pelo algoritmo.
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Figura 25: Custo médio da populacdo em cada iteragao do Ant Colony.

Ant Colony Optimization (Generations simulated = 28)
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Fonte: Elaborado pelo autor.

Por fim, na Figura 26, apresenta-se de forma consolidada os resultados de todos os algo-
ritmos implementados considerando uma mesma instincia de problema. Nota-se que os al-
goritmos apresentam o comportamento esperado, com diminui¢ao do valor da melhor solu¢do
encontrada com o avanco do tempo. Além disso, a performance dos algoritmos atinge niveis

semelhantes apds 60 segundos de execugao.

Figura 26: Exemplo comparativo dos métodos de busca implementados.

Benchmark of methods

—— Best solution - Random search
150000 Best solution - Nelder-Mead
Best solution - Genetic Algorithm

160000 - = Best solution - Ant Colony

140000
120000 4

100000 -

Total Inventory Cost
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Fonte: Elaborado pelo autor.

Portanto, com os algoritmos de busca implementados e calibrados, € possivel seguir para a
etapa de Experimentos de Comparagdo, que serd apresentada no capitulo 6, no qual serd descrita

a metodologia utilizada para avaliar e comparar o desempenho dos algoritmos.
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6 PLANEJAMENTO DOS EXPERIMENTOS DE
COMPARACAO

Com o modelo de simulacdo-otimizacdo implementado e calibrado, é possivel iniciar a
etapa dos experimentos de comparacdo. Nessa parte, serd estudado o desempenho dos 4
métodos de busca implementados sob diferentes condi¢Oes de estresse da linha de produgao

e de complexidade do problema.

Para identificar o método numérico mais eficiente para a otimizagdo dos parametros de con-
trole de estoque para o SELSP, serdo realizados diferentes experimentos seguindo a metodolo-
gia do Design of Experiments (DoE). Essa abordagem permitird a realizacdo de uma avaliacdo

comparativa entre os algoritmos de otimizacao de forma sistematica e estatistica.

A metodologia do DoE comeca pela identificacdo das varidveis de interesse que podem
afetar o desempenho dos algoritmos. No contexto em questdo, essas varidveis podem incluir o
numero de produtos (/NV), a variabilidade da sistema (cv), a taxa de eficidcia da maquina (p) e a

distribui¢do da demanda (p).

Uma vez identificados os fatores, € necessario definir os niveis em que cada variavel serd
testada. Na Tabela 16, sao apresentados os fatores que serdo variados durante os experimentos

e seus respectivos valores/niveis:

Tabela 16: Tabela resumo dos fatores do DoE e seus niveis.

Fator Descricao Niveis

N Nimero de produtos 5; 10; 20

cv Coeficiente de variagao 10%; 25%; 50%
p Taxa de eficdcia da maquina 70%; 80%; 90%

Distribuicdo da demanda (geométrica) 0; 0,05; 0,15

Note que, para a distribui¢do da demanda, foi adotada uma distribuicdo geométrica. Essa
abordagem permite o controle dos diferentes niveis de distribuicdo com apenas um dnico fator,
que representa a probabilidade de sucesso (p) caracteristica dessa distribui¢do. Assim, quanto
maior o valor de p, menos uniforme € a distribuicdo da demanda entre os N produtos do pro-

blema, conforme ilustrado na Figura 27:
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Figura 27: Distribui¢do geométrica para diferentes valores de p.
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Fonte: Elaborado pelo autor.

Além das varidveis apresentadas na Tabela 16, que adotardo diferentes valores durante os

experimentos, sao estabelecidos outros parametros, constantes ou semi-variaveis, que também

sdo importantes para a definicdo do problema, conforme apresentado na Tabela 17:

Tabela 17: Tabela resumo das varidveis usadas nos Experimentos de Comparacgao.

Parametro Descricao Tipo Valor

Mod Estratégia de sequenciamento Constante LDS

CMU Margem de contribuicdo unitaria Constante R$ 40/produto
TCM Margem de contribui¢do total anual Constante R$ 1.000.000/ano
gsetup Tempo de setup Constante 1 h/setup

sc Custo de setup Constante RS 250/setup

le Custo de vendas perdidas Constante R$ 40/unid.

hc Custo de armazenagem unitério Constante RS 0, 1/unid./dia
Tsm Numero de dias simulados Constante 100 dias
Tyemanda Demanda total anual Semi-variavel 25.000 unid./ano
tprod Tempo de processamento médio Semi-varidvel X h/unid.

O proximo passo do DoE € a geracdo de experimentos, em que cada experimento repre-

senta uma combinagao especifica de niveis das varidveis. Tendo em vista o baixo custo para a

realizacdo de cada um dos experimentos, optou-se pela realizacdo de um experimento fatorial

completo com 3 repeticdes, totalizando 972 ensaios, sendo 324 ensaios unicos (81 para cada

um dos 4 métodos de busca), conforme apresentado na Tabela 18.

Além disso, para a realizagdo dos experimentos, determinou-se que o espaco de solugcdo
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explorado seria limitado a valores entre 0 e 1.000 para quaisquer varidveis. Todos os algoritmos

tiveram um tempo maximo de execu¢ao de 60 segundos para cada um dos ensaios.

Portanto, no contexto deste estudo, o DoE serd uma ferramenta essencial para avaliar o
desempenho dos algoritmos de otimizacao (Random Search - RD, Nelder-Mead - NM, Genetic
Algorithm - GA e Ant Colony - ACO) diante das variagdes nos parametros do problema, con-
tribuindo para uma escolha mais informada e eficaz do algoritmo a ser utilizado em diferentes

situacdes de otimizagao.

Tabela 18: Tabela resumo do plano de Experimentos de Comparacao.

Ordem Padrao Ordem dos Ensaios N c¢v p p Algoritmo

470 1 5 02 0,7 00 NM
395 2 20 02 09 01 GA
376 3 20 02 0,8 0,0 ACO
312 4 10 0,5 08 0,1 ACO
968 5 10 0,5 09 0,1 ACO
64 6 20 02 09 00 ACO
465 7 5 01 09 01 RD
292 8 10 0,5 0,7 0,0 ACO
708 9 20 0,2 0,8 0,1 ACO
231 10 10 0,1 0.8 0,0 GA
725 963 20 05 0,7 0,1 RD
212 964 5 05 09 01 ACO
460 965 5 01 09 00 ACO
886 966 10 0,1 0,8 0,1 NM
150 967 5 02 0,7 0,1 NM
10 968 20 0,1 0,7 0,1 NM
524 969 5 05 08 0,1 ACO
732 970 20 05 0,7 0,1 ACO
533 971 5 05 09 01 RD
972 972 10 0,5 09 0,1 ACO

Os resultados dos experimentos de comparacdo serdo analisados estatisticamente no
capitulo 7 para determinar como as diferentes varidveis afetam o desempenho dos algorit-
mos e identificar qual algoritmo apresenta melhor desempenho na resolu¢do do problema de

otimizac¢do dos parametros de estoque no contexto do Stochastic Economic Lot Scheduling Pro-



blem (SELSP).
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7 DISCUSSAO DOS RESULTADOS

Neste capitulo, apresentam-se os resultados dos 972 experimentos do DoE de comparagdo
proposto no capitulo 6. Os experimentos foram executados em um computador pessoal com
processador M1 com arquitetura ARM de 8 nicleos e 16 GB de RAM com frequéncia de 4.266
MHz.

A Tabela 20 exibe uma amostra dos resultados obtidos para cada ensaio do DoE, onde sao
apresentados os parametros que definem a instancia do problema; as varidveis resposta - Custo
de estoque total (TIC) e Nivel de servico (SL); e as varidveis de decisao (s;, S;), que representam

os parametros de estoque para cada produto.

Ao analisar-se os efeitos do nimero de produtos no custo de estoque (Figura 28 e Tabela
19), é possivel notar que ha uma correlacdo positiva entre o custo € o nimero de produtos,

possivelmente pela maior necessidade de estocagem de itens.

E interessante notar também que hd uma maior dispersdo entre os resultados para o caso de
N =5 e esse comportamento € ocasionado, possivelmente, pela maior intensidade de demanda
dos produtos (i.e. rateio da demanda total em poucos produtos). Essa caracteristica pode tornar
mais complexa a busca por niveis 6timos de estoque que equilibrem custos de armazenamento

baixos e minimizacao da penalizacdo por vendas perdidas.

Essa hipétese € reforcada quando se observa a Tabela 19, na qual o nivel de servico médio

para solugdes com 5 produtos é o menor, indicando maiores custos com vendas perdidas.

Tabela 19: Média e desvio padrao dos resultados para diferentes niveis de V.

TIC SL
N Média Desv. pad. Média Desv. pad.
S 113.443,56 41.486,46 95,27 4,74
10 112.458,95 13.878,13 98,54 1,25
20 164.414,18 14.511,26 98,83 1,03
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Figura 28: Boxplots com dispersdo das amostras para os diferentes niveis de N.
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Fonte: Elaborado pelo autor.

Em seguida, analisa-se o efeito de cv (coeficiente de variagdo) no custo. Por meio da
Figura 29 e da Tabela 21, percebe-se que as solucdes encontradas tendem a ter comporta-
mentos semelhantes, indicando uma baixa influéncia desse fator no custo das solu¢des. Ao
mesmo tempo, isso revela uma alta robustez do modelo de simulag@o-otimizagdo para encon-

trar solugdes mesmo em cendrios de maior incerteza operacional.

Figura 29: Boxplots com dispersdo das amostras para os diferentes niveis de cv.
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Fonte: Elaborado pelo autor.
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Tabela 21: Média e desvio padrao dos resultados para diferentes niveis de cv.

TIC SL
cv Média Desv. pad. Média Desv. pad.
0,10 131.018,56 38.131,75 9741 3,83
0,25 129.191,77 35.346,70 97,53 3,33
0,50 130.106,36 34.507,78 97,70 2,67

De forma similar, analisa-se o impacto de p no custo das solucdes. Sendo esse fator equiva-

lente ao nivel de eficdcia da maquina, é natural esperar uma correlagdo negativa entre a taxa de

eficdcia da maquina e o custo, uma vez que uma menor eficicia implica, em geral, em maiores

niveis de estoque devido a menor confiabilidade do sistema. Esse comportamento € confirmado

pelos resultados obtidos, conforme apresentado pela Figura 30 e pela Tabela 22.

Custo total de estoque
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Figura 30: Boxplots com dispersao das amostras para os diferentes niveis de p.
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Fonte: Elaborado pelo autor.

Tabela 22: Média e desvio padrao dos resultados para diferentes niveis de p.

TIC SL
p Média Desv. pad. Média Desv. pad.
0,7 148.600,31 28.440,41 95,73 4,62
0,8 126.623,52 29.031,93 97,84 2,26
0,9 115.092,85 40.777,61 99,07 0,86

J4 o fator p apresenta um comportamento similar ao do fator cv, com uma baixa influéncia
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aparente da heterogeneidade das demandas dos SKUs no custo de estoque total, conforme ilus-

trado na Figura 31 e na Tabela 23. Esse fato reforca a capacidade do modelo construido de obter

solugdes para diferentes condi¢cdes operacionais de demanda.

Custo total de estoque
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Figura 31: Boxplots com dispersdo das amostras para os diferentes niveis de p.
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Fonte: Elaborado pelo autor.

Tabela 23: Média e desvio padrao dos resultados para diferentes niveis de p.

TIC SL
p Média Desv. pad. Média Desv. pad.
0,00 128.612,01 34.563,72 97,65 3,24
0,05 12998841 35.364,88 97,50 3,43
0,15 131.716,26 38.022,37 97,49 3,27

Finalmente, pela Figura 32 e pela Tabela 24, analisam-se os impactos dos métodos de busca

implementados nos custos das solucdes. E possivel perceber que o método de busca Nelder-

Mead encontrou solucdes melhores do que os outros métodos, além de apresentar uma menor

dispersdo entre as amostras. Ja os outros trés métodos (Busca aleatoria, Genetic Algorithm e

Ant-Colony) apresentaram performances semelhantes, sendo o Genetic Algorithm o método de

busca com a performance geral menos interessante.
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Figura 32: Boxplots com dispersdo das amostras para os métodos de busca.
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Fonte: Elaborado pelo autor.

RD

Tabela 24: Média e desvio padrao dos resultados para diferentes métodos de busca.

TIC SL
Método Média Desv. pad. Média Desv. pad.
ACO 133.173,14 37.52593 97,48 3,07
GA 138.236,79 37.815,27 96,56 4,10
NM 115.424,01 27.708,92 98,91 1,62
RD 133.588,31 35.908,79 97,24 3,49

De forma a verificar e mensurar a influéncia dos diferentes fatores testados no custo total

de estoque para o problema estudado, uma Anélise de Variancia foi realizada e é apresentada

na Tabela 25. Ainda, na Equacdo 7.1, € representado o modelo linear proposto para realizar a

Analise de Variancia citada:

TIC=n+cv+p+p+ag+n:cvo+n:p+n:p+n:alg

+cv:ipt+cv:ptcvalg+p:ip+pralg+p:alg (7.1)

Note que para um nivel de significAncia de & = 5%, todos os efeitos principais testados

sdo significativos para o custo, com excecao do fator cv. Ainda, considerando esses fatores, o0s

principais efeitos sdo os dos fatores N, p e dos algoritmos de busca, sendo a distribuicdao da

demanda um fator com efeito menos intenso, conforme havia sido observado anteriormente.
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E importante ressaltar que a Tabela 25 indica que o emprego de diferentes métodos de busca

traz diferencas estatisticamente relevantes (mesmo para niveis de significancia extremamente

baixos: o < 2 x 107!6) para o custo total de estoque. Sendo assim, analisa-se a seguir o

impacto dos algoritmos para diferentes instancias do SELSP.

Tabela 25: Andlise de Variancia para o Custo Total de estoque.

Fator Graude Soma de Quadrados F value Pr(>F)
liberdade quadrados médios
n 2 5,722 x 1011 2,861 x 101 1697,925 < 2 x 10716 #==
cv 2 5,406 x 105 2,703 x 108 1,604 0,201623
rho 2 1,878 x 10 9,389 x 1010 557,188 < 2 x 10710 #x
P 2 1,568 x 10° 7,839 x 108 4,652 0,009770 **
alg 3 7,368 x 1010 2,456 x 1010 145,750 < 2 x 10710 #xx
n:cv 4 1,308 x 1010 3,270 x 10° 19,406 2,45 x 10710 #xx
n:rho 4 2,148 x 10t 5,370 x 10'% 318,681 < 2 x 10716 #==
n:p 4 3,781 x 10° 9,453 x 108 5,610 0,000184 ***
n:alg 6 1,231 x 101% 2,051 x 10 12,171 3,38 x 10713 #xx
cv:rho 4 4,769 x 10° 1,192 x 10° 7,076 1,31 x 10705 sk
cvip 4 2,496 x 10® 6,240 x 107 0,370 0,829880
cv:alg 6 1,583 x 10° 2,639 x 10® 1,566 0,153916
rho:p 4 1,177 x 109 2,942 x 10 1,746 0,137820
rho:alg 6 1,595 x 101 2,658 x 10 15,773 < 2 x 10716 ok
p:alg 6 1,219 x 10° 2,032 x 10® 1,206 0,300744
Residuos 912 1,537 x 101 1,685 x 108

Notas: Nivel de signifancia: 0 ***** 0,001 **** 0,01 *** 0,05 0,1 1

Na Figura 33, comparam-se os resultados obtidos pelos diferentes métodos de busca para

as interagdes de segundo grau com os demais fatores testados no DoE (/V, cv, p e p). Ao

observar as Figuras 33b, 33c e 33d, de forma geral, a diferenca relativa de performances dos

algoritmos € a mesma para as diferentes instancias do problema, sendo o algoritmo Nelder-

Mead consistentemente o método que atinge menores custos entre os quatro.
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(a) Boxplots com dispersdo das amostras para os métodos de busca versus N.
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Fonte: Elaborado pelo autor.
(b) Boxplots com dispersao das amostras para os métodos de busca versus cv.
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Fonte: Elaborado pelo autor.
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(c) Boxplots com dispersdo das amostras para os métodos de busca versus p.

Boxplot dos custos das solugdes dos algoritmos vs rho
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Fonte: Elaborado pelo autor.
(d) Boxplots com dispersdo das amostras para os métodos de busca versus p.
Boxplot dos custos das solugdes dos algoritmos vs p
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Fonte: Elaborado pelo autor.

Porém, ao analisar-se a Figura 33a, nota-se um aumento no distanciamento entre os de-

sempenhos dos algoritmos com o aumento do nimero de produtos. Se, por um lado, para

poucos produtos (N = 5) hd uma maior proximidade entre os desempenhos entre os algoritmos

Nelder-Mead e Ant-Colony (sendo estes os dois melhores métodos nessas condi¢gdes), quando

se aumenta o nimero de produtos (N = 20) o método de Nelder-Mead passa a ser indiscuti-

velmente o melhor método, enquanto o algoritmo Ant-Colony passa a ser o método com a pior

performance, conforme ilustrado na Figura 34. Além disso, por meio da Tabela 26, nota-se que
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o algoritmo Nelder-Mead apresenta custos de 11 a 24% inferiores do que os outros métodos.

Figura 34: Gréfico de interagao entre os fatores “métodos de busca” e “nimero de produtos
N”.
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Fonte: Elaborado pelo autor.

Tabela 26: Diferenca percentual entre o custo médio do Nelder-Mead versus os demais algorit-
mos para diferentes niveis de V.

N NMyvs. ACO NMvs. GA NMvs. RD

5 -12,2% -23,8% -17,4%
10 -11,5% -13,2% -11,2%
20 -15,3% -13,3% -12,6%

O fato acima pode ser explicado pela diferenca de requisitos exigida pelos dois métodos.
Enquanto o algoritmo de Nelder-Mead pode ser executado em espacos continuos de solucoes, o
algoritmo Ant-Colony exige uma discretiza¢ao do espago para que o problema possa ser repre-
sentado como um grafo. Dessa forma, com o aumento do nimero de produtos, a dimensdo do
problema a ser estudado aumenta e o tamanho e densidade do grafo que representa o problema
crescem de forma exponencial, o que provavelmente influencia negativamente na performance

do algoritmo e dificulta sua aplicacdo em cendrios com grande quantidade de produtos.

Para verificar a relevancia estatistica dessa diferenca entre o desempenho médio dos algo-
ritmos, realiza-se um teste HSD de Tukey (Honest Significant Differences). Esse teste € uma
ferramenta estatistica de compara¢do multipla utilizada para identificar diferencgas significativas

entre as médias de varios grupos em um conjunto de dados.
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Figura 35: Teste de Tukey para os métodos de busca.
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Fonte: Elaborado pelo autor.

A Figura 35 indica que, para um nivel de significincia de o = 5%, o algoritmo de Nelder-
Mead apresenta, de fato, um desempenho superior aos demais métodos de busca, ji que é
possivel afirmar que h4d uma diferenca nao nula entre as médias de desempenho dos algoritmos.
De forma, geral, a maior diferenca de desempenho ocorre quando compara-se os algoritmos
Nelder-Mead e Genetic Algorithm, dado que o primeiro apresentou solugdes com custos médios

cerca de 20.000 unidades monetdrias mais baratos, em média, do que o tltimo.

Conforme observado anteriormente, por meio Figura da 36, confirma-se o destaque de de-
sempenho do Nelder-Mead perante os outros métodos de busca para todos os niveis de V tes-
tados. Ainda, é possivel confirmar que, conforme o problema torna-se mais complexo (i.e.
maiores valores de V), a diferenca de desempenho entre os métodos de busca aleatdria, Al-
goritmo Genético e Ant-Colony torna-se quase irrelevante para um nivel de significancia de

a = 5%, conforme apresentado nas Figuras 36b e 36¢.
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Figura 36: Testes de Tukey para os métodos de busca para (a) N = 5, (b) N = 10 e (c)

N = 20.

(a) Teste de Tukey para os métodos de busca com N = 5.

95% family-wise confidence level

o}
(8]
< i 1 1
< i
© |
a 3
Q |
g 1 I |
= i
=z '
g 3
- ; a
2 |
5 3
Q I i
= T i
z i
< |
Q / ] ;
a T 1 I
o '
z |
z | ' | |
a | T 1
T T T T i T T
-40000 -30000 -20000 10000 0 20000 30000
Differences in mean levels of alg
Fonte: Elaborado pelo autor.
(b) Teste de Tukey para os métodos de busca com N = 10.
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(c) Teste de Tukey para os métodos de busca com N = 20.
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Fonte: Elaborado pelo autor.

Por fim, nas Figuras 37 e 38, apresentam-se duas andlise de residuos para verificar a va-
lidade de algumas das hipéteses adotadas para a execucdo da Andlise de Variancia realizada
nesta secdo. Na Figura 37, nota-se que a grande maioria dos pontos acompanha a linha da
reta normal, tendo maior dispersao nos valores extremos em direcdes opostas, o que indica a
validade da hipétese de normalidade na distribui¢do dos residuos. Em seguida, pela Figura 38,
observa-se que a linha vermelha tende a manter-se proxima da linha tracejada, o que fornece

um forte indicio de aderéncia dos dados ao modelo linear proposto (Equagdo 7.1).

Figura 37: Gréfico Q-Q de residuos padronizados.
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Fonte: Elaborado pelo autor.
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Figura 38: Gréafico Residuos vs Fitted.
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Fonte: Elaborado pelo autor.

Portanto, a andlise dos residuos permite validar o modelo proposto para a andlise do de-
sempenho dos diferentes métodos de busca implementados para a resolucdo do problema de

otimizacao dos parametros de controle de estoque no contexto do SELSP.

Por fim, além dos resultados obtidos pelos métodos de busca, propde-se a discussdao dos
efeitos da calibrac@o nos resultados observados. Como explicado na secdo 5, cada método de
busca exigiu uma etapa de calibracdo dos seus hiperparametros. Porém, devido a diferenca
entre as quantidades de parametros a serem calibrados em cada método (vide Tabela 5) e o
tempo necessdrio para a execucdo dos experimentos de calibracdo, a busca de valores 6timos
para os hiperparametros de métodos mais complexos (ex: Genetic Algorithm e Ant-Colony)

torna-se mais trabalhosa.

Diante de cendrios com restri¢des de tempo e recursos, esse fato pode limitar a performance
dos algoritmos, ja que os esfor¢os para a exploracao dos experimentos de calibracdo podem ser
reduzidos. Nesse sentido, algoritmos com menos parametros, tais como o Nelder-Mead, podem
tornar-se mais atrativos, pois permitem uma melhor exploracdo do espaco de possiveis valores

dos parametros, o que pode aumentar as chances de ganho de performance do método de busca.

Dessa forma, diante dos resultados e discussdes apresentados anteriormente, no capitulo 8
a seguir, apresentam-se as principais conclusoes obtidas por meio deste Trabalho de Formatura,

assim como ressalvas e possiveis desdobramentos futuros para o Trabalho.
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8 CONCLUSOES

8.1 Sintese

O controle de estoques é foco de atengdo para muitas empresas devido a sua importancia
financeira e operacional. Porém, ainda que largamente estudado, a calibragao de parametros de
estoque ainda levanta desafios as empresas, que acabam por recorrer a diferentes solu¢des para

otimizar sua operagao.

Nesse sentido, o presente Trabalho de Formatura se prop0s a estudar o problema de
calibracdo de parametros de estoque no contexto do Stochastic Economic Scheduling Problem
(SELSP), que consiste na programac¢ao de uma tinica maquina capaz de produzir multiplos pro-
dutos, mas apenas um tipo de cada vez. Embora tedrico, o SELSP ilustra a realidade de muitas
industrias, principalmente do setor quimico, cosmético e téxtil, evidenciando a contribui¢do

prética do estudo para a industria.

Para tratar do problema de calibra¢ido dos parametros de estoque, foi proposta uma aborda-
gem por meio de um modelo de simulagdo-otimizacao estruturado em uma plataforma aberta,

o Python. Essa abordagem trouxe diversas vantagens para resolu¢dao do problema.

A primeira vantagem foi a integracdo entre o modelo de simulacdo e de otimizacdo dos
parametros de estoque, o que permitiu que os valores sugeridos pelo modelo de otimizagao
pudessem ser facilmente avaliados pelo modelo de simulagdo. Além disso, os resultados da
simulacao puderam ser usados para alimentar o modelo de otimiza¢do novamente, estabele-

cendo um ciclo de retroalimentagdo entre os modelos de forma sinérgica.

Ainda, a abordagem adotada permitiu ter maior transparéncia e controle sobre o método
de otimizacdo. Em geral, as empresas buscam softwares licenciados/pagos para poder otimizar
seus indicadores operacionais. Porém, ha pouca visibilidade sobre a metodologia de otimizacao
adotada por essas ferramentas, fazendo com que o processo de otimizacao se torne uma “caixa
preta”. Em geral, essas solu¢des de mercado ndo adotardo o método de otimizacdo mais ade-
quado para o problema da empresa, ja que elas sdo oferecidas para diferentes problemas, sendo

entao necessario fazer uso de métodos mais genéricos.

Todavia, a implementacdo de um modelo proprio em Python permitiu que fossem testados
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diferentes métodos de busca de forma a verificar qual seria o mais adequado para o problema es-
tudado. Além disso, essa abordagem permitiu o ajuste fino dos métodos por meio da calibragao
de seus hiperparametros para melhorar ainda mais o desempenho do método de otimizagdo para

a calibracdo dos parametros de estoque.

Ademais, como mencionado acima, a implementacdo do modelo de simulagdo-otimizagao
em uma plataforma open source permite oferecer uma ferramenta para a resolucdo do problema
estudado de forma gratuita, sem a necessidade de adquirir licengas para softwares, além de
poder receber contribuicdo de outros pesquisadores que tenham interesse em dar continuidade

ao estudo do problema.

Uma das realizacdes fundamentais deste trabalho foi a avaliagdo de quatro métodos de
busca diferentes, a saber: Busca Aleatoria, Nelder-Mead, Genetic Algorithm e Ant-Colony Op-
timization. Notavelmente, o Nelder-Mead destacou-se tanto em desempenho (solucdes até 24%
melhores) como em praticidade, demonstrando maior eficicia na busca por solucdes Otimas e

maior facilidade na calibracdo de hiperparametros em relagdo aos outros métodos testados.

O algoritmo se mostrou mais eficiente em diferentes condi¢cdes, como ambientes de maior
incerteza/variabilidade, mas também em cendrios de maior complexidade. O ganho de desem-
penho se tornou mais notavel em problemas de maior dimensao, muito por causa da flexibili-
dade do método em buscar solu¢des em espagos continuos. Esse destaque reforca a importancia
critica da escolha desse método de busca na otimiza¢do do problema SELSP, devido a maior

eficacia em cenarios diversos.

Em resumo, a implementacdo bem-sucedida de um modelo de simulagdo-otimizacdo em
Python, com o método de busca Nelder-Mead, apresentou uma contribuicao significativa para
o campo da otimizacao de parametros de estoque em ambientes de producao complexos, como
o SELSP. Essa abordagem flexivel e acessivel ndo apenas trouxe uma ferramenta de solugdo
para o problema, mas também refletiu um compromisso com a acessibilidade e a redugao
da dependéncia de solucdes comerciais. Dessa forma, o Trabalho proporcionou uma valiosa
contribui¢do para a comunidade cientifica e industrial, oferecendo uma alternativa de cédigo

aberto para abordar desafios de otimizacao de estoque.

8.2 Limitacoes e desdobramentos futuros

Reconhece-se que o presente Trabalho apresenta certas limitagdes, que podem ser usadas
para orientar futuros trabalhos sobre o tema. A calibracdo dos métodos de busca, embora es-

sencial, permanece um desafio. Neste trabalho, optou-se pelo uso de um experimento fatorial
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completo para a realizacdo dos experimentos de calibracdo dos métodos de busca, sendo testa-
das aproximadamente 256 combinacdes de hiperparametros para cada método. A abordagem
adotada pode ser mais vulnerdvel a niveis de calibracao subotimos dos métodos de busca, o que

pode afetar diretamente o desempenho dos métodos testados.

Além disso, neste Trabalho foram avaliados 4 métodos de busca, embora na literatura exis-
tam diversos outros métodos que poderiam ser adaptados ao problema estudado. Sendo assim, a
avaliacdo de métodos ndo foi exaustiva e abre oportunidades para que sejam explorados outros

algoritmos de otimizagao.

Nesse sentido, melhorias na calibracdo de hiperparametros e a exploragao de outros
métodos de otimizacdo devem ser dreas de foco continuo para futuros desdobramentos deste
trabalho. Além disso, a incorporacdo de métodos de busca local pode permitir uma exploragao

mais profunda do espaco de solucdes, aprimorando ainda mais os resultados obtidos.

Outra diregado futura sugerida € a implementacao da calibracdo online de hiperparametros.
Essa abordagem pode tornar o modelo mais adaptdvel as estratégias de diversificacdo e
intensificacdo na busca de solug¢des, permitindo uma otimiza¢do continua e flexivel para o
problema estudado. Além disso, a busca por métodos de calibracdo mais avangados para os

hiperparametros dos métodos de busca pode aumentar a robustez do processo de otimizagao.

8.3 Disponibilidade de dados

Os dados e modelos que embasam os resultados obtidos neste Trabalho podem ser encon-

trados no repositdrio online a seguir: Repositorio do GitHub.



https://github.com/yu9800/SELSP_simOpt
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APENDICE A

A.1 Exemplo de funcionamento do Modelo SimOpt cons-
truido

Figura 39: Modelo SimOpt - Exemplo de configuracao de uma instancia de problema no
modelo com N =10, cv = 0,1, p = 0,9, p = 0,05 e tempo maximo de execugao de 3 min.

4) Setup flags
## Defining parameters of the problem
flags_ = {

## 1) Problem parameters

'N': 10, ## Number of items

‘ev': ## Coefficient of variation

‘rho' . ## Availability rate of the machine

'p_geo': 0.05, ## Demand distribution coefficient: {@ = Uniform; 0,05 = Slightly concentrated ; 0,15 = Highly concenl
'mod': 'LDS', ## Production prioritization method: {FIS, LDS}

'days_year': 250, ## Working days per year

'setup@': 1, ## Base setup time (hours)

## 2) Cost parameters

'gross_margin': 1000000, ## Gross margin

‘cmu': 40, ## Contribution margin per unit
## Setup cost

## Setup cost

## Daily holding cost

## 3) Simulation-Optimization parameters

'max_time': 3%60 , ## Max time for the optimization model (seconds)
'simulation_time': 24%100, ## in hours

'random_state': 1, ## Randomness: {0, 1}

'reps': 3, ## Repetitions for each solution test

'tgqdm': True, ## Progress bar: {True = ON; False = OFF}

## 4) Nelder-Mead hyperparameters
'Reflection_rate': 1,
'Expansion_rate': 0.5,
'Contraction_rate': 0.5,
'Shrinkage_rate': 1.5,
'max_iter_NM': 1000,
'max_same_best_NM': 500,

"tol NM': 1

}

config_ = define_config(flags_)

Fonte: Elaborado pelo autor.
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Figura 40: Modelo SimOpt - Exemplo de simulacao da distribuicdo da demanda entre os
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produtos a partir dos pardmetros indicados na configura¢do do problema.

Daily demand per SKU
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Product ID

Fonte: Elaborado pelo autor.

Figura 41: Modelo SimOpt - Exemplo de output do método de busca, com indicac¢do dos
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mellhores pares (s;, S;) encontrados para cada produto.

5) SimOpt model: Finding a solution

After setting up the problem in section 4, run the cell bellow in order to find a solution for the problem

## Runs the SimOpt model
results_nm = nelder_mead(flags_, config_)

## Prints results
plot_evolution_best(results_nm)
print_result(results_nm, config_)

Nelder-Mead: 34%| N | 337/1000 [03:00<05:54, 1.87it/s]
Nelder-Mead (iterations simulated = 337)

—— Best solution
«  Average cost of Simplex

160000 -
%
S
2 140000 -
£
-
H
£
= 120000 x
: o ,
100000 - ~ ~ N — 'x\ v
~ S W \\‘ - A - o ‘\\ "
-
| ' ' ' ' ' . '
0 50 100 150 200 250 300 350
Iterations
Product @: Smin = 353.09, Smax = 438.78
Product 1: Smin = 239.33, Smax = 565.77
Product 2: Smin = 378.20, Smax = 523.40
Product 3: Smin = 222.62, Smax = 333.72
Product 4: Smin = 200.06, Smax = 543.98
Product 5: Smin = 91.93, Smax = 290.14
Product 6: Smin = 174.53, Smax = 392.78
Product 7: Smin = 294.57, Smax = 506.98
Product 8: Smin = 205.81, Smax = 487.82
Product 9: Smin = 222.16, Smax = 362.07

Fonte: Elaborado pelo autor.
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Figura 42: Modelo SimOpt - Exemplo de simulac¢do da evolugao do estoque e dos indicadores
de performance da fabrica utilizando os parametros de estoque sugeridos pelo método de

busca.
6) Simulating best solution
simulate_best(results_nm, config_)
Simulation Started
Days simulated: 100
Simulation Ended
Performance indicators:
TIC: 86,451.40
THC: 65,201.40 | TLC: 0.00 | TSC: 21,250.00
Total Contribution Margin: 998,900.00
SL: 100.00%
Inventory
~—— Product 0
Product 1
500 1 —— Product 2
—— Product 3
—— Product 4
_ %04 — Product
< Product 6
K3 —— Product 7
2 300+ Product 8
€
H
£ 30

THC: R$ 65,201.40
TLC: R$ 0.00
TSC: R$ 21,250.00

TIC: RS 86,451 40
SL: 100.00%

Fonte: Elaborado pelo autor.



